![广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16267106/0-1729298732793/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16267106/0-1729298732845/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16267106/0-1729298732867/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份广东省茂名市直属学校2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过
A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限
2、(4分)下列各组线段a、b、c中,能组成直角三角形的是( )
A.a=4,b=5,c=6B.a=1,b=,c=2
C.a=1,b=1,c=3D.a=5,b=12,c=12
3、(4分)在以x为自变量, y为函数的关系式y=5πx中,常量为( )
A.5B.πC.5πD.πx
4、(4分)已知在RtΔABC中,∠C=90°,AC=2,BC=3,则AB的长为( )
A.4B.C.D.5
5、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
A.4个B.5个C.8个D.9个
6、(4分)二次根式中,字母a的取值范围是( )
A.a<﹣B.a>﹣C.aD.a
7、(4分)如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于
A.2B.C.3D.
8、(4分)下列各组数中,不是勾股数的是 ( )
A.3,4,5B.5,12,13C.6,8,10D.7,13,18
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当m=____时,关于x的分式方程无解.
10、(4分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
11、(4分)如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。
12、(4分)如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.
13、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明要把一篇社会调查报告录入电脑,当他以100字/分的速度录入文字时,经240分钟能完成录入,设他录入文字的速度为v字/分时,完成录入的时间为t分。
(1)求t与v之间的函数表达式;
(2)要在3h内完成录入任务,小明每分钟至少应录入多少个字?
15、(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
16、(8分)如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中,.
(1)求直线的函数解析式;
(2)若直线与轴交于点,求出的面积.
17、(10分)在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.
(1)若正方形ABCD边长为3,DF=4,求CG的长;
(2)求证:EF+EG=CE.
18、(10分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,已知AB= 6,点C,D在线段AB上,AC =DB = 1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.
20、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
21、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
22、(4分)如图,在中,,是线段的垂直平分线,若,则用含的代数式表示的周长为____.
23、(4分)如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:
(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;
(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?
25、(10分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?
26、(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.
解得,或.∴k<1,b<1.
一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
∴直线y=kx+b经过二、三、四象限.故选D.
2、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
【详解】
A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;
B、∵12+2=22,∴该三角形是直角三角形,故此选项符合题意;
C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;
D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.
故选B.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3、C
【解析】
根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.
【详解】
在以x为自变量, y为函数的关系式y=5πx中,常量为5π,
故选:C.
考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.
4、C
【解析】
由题意可知AB为直角边,由勾股定理可以求的.
【详解】
AB=,所以答案选择C项.
本题考查了直角三角形中勾股定理的运用,熟悉掌握概念是解决本题的关键.
5、D
【解析】
首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥AB,
又∵EF∥BC,GH∥AB,
∴∴AB∥GH∥CD,AD∥EF∥BC,
∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
故选D.
本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
6、B
【解析】
根据二次根式以及分式有意义的条件即可解答.
【详解】
根据题意知2a+1>0,解得:a>﹣,故选B.
本题考查二次根式有意义的条件,解题的关键是正确理解二次根式与分式有意义的条件,本题属于基础题型.
7、B
【解析】
根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,
可得AF=AD+DF=AD+BC=2BC=1.
【详解】
解:因为,四边形ABCD是平行四边形,
所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F
因为,的平分线与DC交于点E,
所以,∠FAE=∠BAE,∠AEB=∠AEF
所以,△AEF≌△AEB
所以,EF=EB,AB=AF=1
所以,△DEF≌△CEB
所以,BC=DF
所以,AF=AD+DF=AD+BC=2BC=1
所以,BC=2.1.
故选B.
本题考核知识点:平行四边形、全等三角形. 解题关键点:熟记平行四边形性质、全等三角形判定和性质.
8、D
【解析】
根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.
【详解】
A、32 +42 =52,能构成直角三角形,是正整数,故是勾股数;
B、52 +122 =132,能构成直角三角形,是正整数,故是勾股数;
C、62 +82 =102,能构成直角三角形,是正整数,故是勾股数;
D、72 +132 ≠182,不能构成直角三角形,故不是勾股数,
故选D.
本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-6
【解析】
把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
10、1
【解析】
由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.
【详解】
∵∠C=90°,∠ABC=60°,
∴∠A=10°.
∵BD平分∠ABC,
∴∠CBD=∠ABD=∠A=10°,
∴BD=AD=6,
∴CD=BD=6×=1.
故答案为1.
本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.
11、
【解析】
把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:
【详解】
解:把点A(2,2)代入得:
∴k=4
∴
当y=3时
∴
∴B()
由函数图像可知的解集是:
本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.
12、1
【解析】
根据菱形的性质得出CD=AD,BC∥OA,根据D (4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.
【详解】
∵四边形ABCO是菱形,
∴CD=AD,BC∥OA,
∵D (4,2),反比例函数的图象经过点D,
∴k=8,C点的纵坐标是2×2=4,
∴,
把y=4代入得:x=2,
∴n=3−2=1,
∴向左平移1个单位长度,反比例函数能过C点,
故答案为:1.
本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.
13、6
【解析】
由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.
【详解】
解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.
本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),(2)小明每分钟至少应录入134个字,才能在3h内完成录入任务.
【解析】
(1)由题意得:vt=240×100,即可求解;
(2)3h=180,当t=180时,180=,解得:v=,即可求解.
【详解】
(1)解:(字)
,
.
(2)解:分,
当时,,
,在第一象限内,t随v的增大而减小,
小明每分钟至少应录入134个字,才能在3h内完成录入任务.
此题考查了是反比例函数的应,用现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
15、(1)①P2,P3 ,②1≤x≤或≤x≤-1;(2)2-≤a≤1.
【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.
【详解】
解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;
(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.
本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.
16、(1);(2)
【解析】
(1)过点作于点D,证明,然后可求得点C的坐标,于是用待定系数法即可求得直线的函数解析式;
(2)先求出点坐标,然后求出AM的长,即可求出的面积.
【详解】
解:(1)过点作于点,
,,
,,
,
,
,
,
,
,
又,,
,
,
,
,
设直线BC的函数解析式为
解得
∴直线的函数解析式为
(2)当时,解得
,
,
.
本题是一次函数与几何综合题,运用数形结合思想实现坐标与线段长度之间的转换是解决函数问题的重要方法.
17、 (1);(2)证明见解析.
【解析】
(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;
(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.
【详解】
(1)解:∵四边形ABCD是正方形,
∴∠BCG=∠DCB=∠DCF=90°,BC=DC,
∵BE⊥DF,
∴∠CBG+∠F=∠CDF+∠F,
∴∠CBG=∠CDF,
在△CBG和△CDF中,
,
∴△CBG≌△CDF(ASA),
∴BG=DF=4,
∴在Rt△BCG中,CG2+BC2=BG2,
∴CG==;
(2)证明:如图,过点C作CM⊥CE交BE于点M,
∵△CBG≌△CDF,
∴CG=CF,∠F=∠CGB,
∵∠MCG+∠DCE=∠ECF+∠DCE=90°,
∴∠MCG=∠ECF,
在△MCG和△ECF中,
,
∴△MCG≌△ECF(SAS),
∴MG=EF,CM=CE,
∴△CME是等腰直角三角形,
∴ME=CE,
又∵ME=MG+EG=EF+EG,
∴EF+EG=CE.
本题考查了正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形,熟练掌握性质定理是解题的关键.
18、3<m<1.
【解析】
根据一次函数的性质即可求出m的取值范围.
【详解】
∵一次函数的图象经过第二、三、四象限,
∴,
∴3<m<1.
本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN==1,
∴点G移动路径的长是1,
故答案为:1.
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.
20、 (-2,2)
【解析】
由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
【详解】
解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
∴A′的坐标为(-2,2).
故答案为:(-2,2).
本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
22、2a+3b
【解析】
由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AD=BD=BC=b,从而可求△ABC的周长.
【详解】
解:∵AB=AC,
CD=a,AD=b,
∴AC=AB=a+b,
∵DE是线段AB的垂直平分线,
∴AD=BD=b,
∴∠DBA=∠BAC=36°,
∵∠BAC=36°,
∴∠ABC=∠ACB=72°,
∴∠DBC=∠ABC−∠DBA=36°,
∴∠BDC=180°−∠ACB−∠CBD=72°,
∴BD=BC=b,
∴△ABC的周长为:AB+AC+BC=2a+3b.
故答案为:2a+3b.
本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AD=BD=BC,本题属于中等题型.
23、3
【解析】
在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
【详解】
在Rt△ABC中,
∵AC=6,BC=8,
∴AB==10,
∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
∴AE=AC=6,DE=DC,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4,
设CD=x,则BD=8-x,
在Rt△BDE中,
∵BE2+DE2=BD2,
∴42+x2=(8-x)2,解得x=3,
即CD的长为3cm.
故答案为3
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)y=20x(0≤x≤30);(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.
【解析】
试题分析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;
(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.
试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,
∵点C(30,600)在函数y=kx的图象上,
∴600=30k,
解得k=20,
∴y=20x(0≤x≤30);
(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),
由图形可知,点A(8,120),B(20,600)
所以,,解得,所以,y=40x﹣200,
设点D为OC与AB的交点,联立,解得,
故乙出发后10分钟追上甲,此时乙所走的路程是200米.
考点:一次函数的应用.
25、改进设备后平均每天耗煤1.5吨.
【解析】
设改进后评价每天x吨,根据题意列出分式方程即可求解.
【详解】
解:设改进后评价每天x吨,
,
解得x=1.5.
经检验,x=1.5是此分式方程的解.故
故改进设备后平均每天耗煤1.5吨.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行求解.
26、(1)饮用水和蔬菜分别为1件和2件
(2)设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
【解析】
试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
(3)分别计算出相应方案,比较即可.
试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解这个方程,得x=1.
∴x﹣80=2.
答:饮用水和蔬菜分别为1件和2件;
(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:
,
解这个不等式组,得2≤m≤3.
∵m为正整数,
∴m=2或3或3,安排甲、乙两种货车时有3种方案.
设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
(3)3种方案的运费分别为:
①2×300+6×360=2960(元);
②3×300+5×360=3000(元);
③3×300+3×360=3030(元);
∴方案①运费最少,最少运费是2960元.
答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份广东省北江实验学校2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京师范大附中2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)