![广东省梅州大埔县联考2025届数学九年级第一学期开学监测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16267107/0-1729298738844/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省梅州大埔县联考2025届数学九年级第一学期开学监测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16267107/0-1729298738922/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省梅州大埔县联考2025届数学九年级第一学期开学监测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16267107/0-1729298738947/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省梅州大埔县联考2025届数学九年级第一学期开学监测试题【含答案】
展开
这是一份广东省梅州大埔县联考2025届数学九年级第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正比例函数的图象向上平移1个单位后得到的函数解析式为( )
A.B.C.D.
2、(4分)某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得( )
A.B.
C.D.
3、(4分)直角三角形两条直角边分别是和,则斜边上的中线等于( )
A.B.13C.6D.
4、(4分)如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为( )
A.12B.17C.19D.24
5、(4分)如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为
A.1B.C.D.
6、(4分)在,,,,中,分式的个数是( )
A.1B.2C.3D.4
7、(4分)下列二次根式中,是最简二次根式的是( )
A.B.C.D.
8、(4分)如图,已知D、E分别是△ABC的AB、AC边上的一点,DE∥BC,△ADE与四边形DBCE的面积之比为1:3,则AD:AB为( )
A.1:4B.1:3C.1:2D.1:5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
10、(4分)若在实数范围内有意义,则的取值范围是____________.
11、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.
12、(4分)已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.
13、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,∠C=90∘,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.
(1)求证:CD=BE;
(2)若AB=10,求BD的长度.
15、(8分)如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
(1)求证:AB 是⊙O 的切线;
(2)如果 CF =2,CP =3,求⊙O 的直径 EC.
16、(8分)如果一组数据﹣1,0,2,3,x的极差为6
(1)求x的值;
(2)求这组数据的平均数.
17、(10分)已知为原点,点及在第一象限的动点,且,设的面积为.
(1)求关于的函数解析式;
(2)求的取值范围;
(3)当时,求点坐标;
(4)画出函数的图象.
18、(10分)未成年人思想道德建设越来越受到社会的关注.某青少年研究机构随机调查了某校 100名学生寒假花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查 数据制成了如下的频数分布表(部分空格未填).
某校 100 名学生寒假花零花钱数量的频数分布表:
(1)完成该频数分布表;
(2)画出频数分布直方图.
(3)研究认为应对消费 150 元以上的学 生提出勤俭节约的建议.试估计应对该校1200 学生中约多少名学生提出该项建议?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则x的取值范围为__________.
20、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.
21、(4分)化简:(2)2=_____.
22、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
23、(4分)分解因式:x2-9=_ ▲ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
直接用含t的代数式分别表示:______,______;
是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
25、(10分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.
26、(12分)如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。
(1)求证:四边形ABEF是平行四边形;
(2)当AB=AC时,求证:四边形AECF时矩形;
(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.
【详解】
根据“上加下减”的原理可得:
函数y=−2x的图象向上平移1个单位后得出的图象的函数解析式为y=−2x+1.
故选A
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
2、B
【解析】
设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x (1+25%)米,需要天. 根据实际天数比原计划提前4天完成任务即可得出数量关系.
【详解】
设原计划每天修建管道x米,
根据题意的– =4,
- - =4,
- =4,
选项B正确.
本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.
3、A
【解析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵直角三角形两直角边长为5和12,
∴斜边==13,
∴此直角三角形斜边上的中线等于.
故选:A.
此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.
4、A
【解析】
由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB, 再由▱ABCD的周长为28,BD=10, 即可求得AB+BC=14,BO=5,由此可得BE+OE=7, 再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.
【详解】
∵四边形ABCD是平行四边形,
∴O是BD中点, OB=OD,
又∵E是CD中点,
∴BE=BC,OE是△BCD的中位线,
∴OE=AB,
∵▱ABCD的周长为28,BD=10,
∴AB+BC=14,
∴BE+OE=7,BO=5
∴△OBE的周长为=BE+OE+BO=7+5=1.
故选A.
本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.
5、D
【解析】
由AAS证明≌,得出,证出,连接DM,由HL证明≌,得出,因此,设,则,,在中,由勾股定理得出方程,解方程即可.
【详解】
解:四边形ABCD是矩形,
,,,,
,
,
,
,
,
在和中,,
≌,
,
,
,
在和中,
,
≌,
,
,
设,则,,
在中,由勾股定理得:,
解得:,
.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.
6、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:,的分母中含有字母是分式,其他的分母中不含有字母不是分式,
故选:B.
考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.
7、A
【解析】
直接利用最简二次根式的定义分析得出答案.
【详解】
A.是最简二次根式,故此选项正确;
B.,故此选项错误;
C.,故此选项错误;
D.,故此选项错误.
故选A.
本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.
8、C
【解析】
先根据已知条件求出△ADE∽△ABC,再根据面积的比等于相似比的平方解答即可.
【详解】
解:∵S△ADE:S四边形DBCE=1:3,
∴S△ADE:S△ABC=1:4,
又∵DE∥BC,
∴△ADE∽△ABC,相似比是1:1,
∴AD:AB=1:1.
故选:C.
此题考查相似三角形的判定与性质,解题关键在于求出△ADE∽△ABC
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
10、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
11、
【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.
【详解】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,
过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,
∵△ABO是等边三角形,
∴OM=AO=×4=2,∴BN=OM=2,
在Rt△OBM中,BM===2,
∴ON=BM=2,
∵C,
∴CN=ON+OC=2+=3,
在Rt△BNC中,BC=,
即PC+AP的最小值为,
故答案为.
本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.
12、3
【解析】
根据求平均数的方法先求出a, 再把这组数从小到大排列,3处于中间位置,则中位数为3.
【详解】
a=3×5-(1+4+3+5)=2,
把这组数从小到大排列:1,2,3,4,5,
3处于中间位置,则中位数为3.
故答案为:3.
本题考查中位数与平均数,解题关键在于求出a.
13、4
【解析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.
【详解】
∵四边形ABCD是平行四边形
∴OB=OD,AB=CD,AD=BC
∵平行四边形ABCD的周长为8
∴AD+CD=4
∵
∴AM=CM
∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.
故答案为:4
本题主要考查了平行四边形的性质,线段垂直平分线的性质。
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)BD=.
【解析】
(1)等腰直角三角形的底角为45°,角平分线上的点到两边的距离相等,根据这些知识用线段的等量代换可求解.
(2)先求出BC的长度,再设BD=x,可表示出CD,从而可列方程求解.
【详解】
(1)证明:∵AD平分∠CAB,C=90∘,DE⊥AB
∴DC⊥AC,
∴CD=DE
∵AC=BC
∴∠B=45°
∴∠B=∠BDE
∴DE=BE
∴CD=BE;
(2)解:在△ABC中,
∵∠C=90°,AC=BC,AB=10
∴BC=5
在Rt△BDE中,设BD=x,
∵DE=BE=CD
∴BE=CD=x,
列方程为:x+x=5
解得BD=x=10−10.
本题考查角平分线的性质,等腰三角形的性质,勾股定理等知识点.以及数形结合的思想.
15、(1)见解析;(2)⊙O 的直径EC= 1.
【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
【详解】
证明:(1)连接AO,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=10°,
∵AO=CO,
∴∠0AC=∠OCA=10°,
∴∠BAO=120°-10°=90°,
∵OA 是半径
∴AB 是⊙O 的切线;
(2)解:连接OP,
∵PF⊥BC,∴∠FGC=∠EGP=90°,
∵CF=2,∠FCG=10°,∴FG=1,
∴在Rt△FGC 中CG=
∵CP=1.∴Rt△GPC 中,PG=
设OG=x,则OC=x+,连接OP,,显然OP=OC=x+
在 Rt△OPG 中,由勾股定理知
即(x+)2=x2+()2∴x .
∴⊙O 的直径EC=EG+CG=2x++=1.
故答案为:(1)见解析;(2)⊙O 的直径EC= 1.
本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.
16、(1)x=1或x=-3;(2)或
【解析】
(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。
【详解】
解:(1)∵3+1=4<6,∴x为最大值或最小值.
当x为最大值时,有x+1=6,解得x=1.
当x为最小值时,3﹣x=6,解得x=﹣3;
(2)当x为1时,平均数为 .
当x为﹣3时,平均数为 .
本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.
17、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.
【解析】
(1)根据三角形的面积公式即可得出结论;
(2)根据(1)中函数关系式及点P在第一象限即可得出结论;
(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;
(4)利用描点法画出函数图象即可.
【详解】
解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),
∴S=×8×y=4y.
∵x+y=12,
∴y=12−x.
∴S=4(12−x)=48−4x,
∴所求的函数关系式为:S=−4x+48;
(2)由(1)得S=−4x+48>0,
解得:x<12;
又∵点P在第一象限,
∴x>0,
综上可得x的取值范围为:0<x<12;
(3)∵S=12,
∴−4x+48=12,
解得x=1.
∵x+y=12,
∴y=12−1=3,
即P(1,3);
(4)∵函数解析式为S=−4x+48,
∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.
所画图象如图:
本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.
18、(1)见解析;(2)见解析;(3)540名.
【解析】
(1)用100乘以频率求出0.5-50.5范围的频数,根据频率之和为1,求出100.5-150.5范围的频率和频数,最后根据每个范围中两整数部分的平均数得出组中值,填表即可;
(2)依据频数分布直方图的画法作图;
(3)求出150元以上的频率之和,再乘以1200即可得到结果.
【详解】
解:(1)100×0.1=10, ,100-(10+20+30+10+5)=25,
,,
如图:
(2)如图所示:
(3)1200×(0.3+0.1+0.05)=540(名)
答:估计应对该校1200 学生中约540名学生提出该项建议.
本题考查了读频数(频率)分布直方图的能力、频数分布直方图的画法和用样本估计总体的知识,弄懂题意是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≤1
【解析】
解:∵二次根式有意义,
∴1-x≥0,
∴x≤1.
故答案为:x≤1.
20、乙
【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
【详解】
∵该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,
∴甲被淘汰,
又∵丙的总分为80×60%+90×30%+73×10%=82.3(分),乙的总分是82.5,
∴根据规定,将被录取的是乙,
故答案为:乙.
本题考查了加权平均数的计算.解题的关键是熟练掌握加权平均数的定义.
21、1.
【解析】
根据二次根式的性质:进行化简即可得出答案.
【详解】
故答案为:1.
本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.
22、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
【详解】
解:∵∠ACB=90°,点D为AB的中点,
∴AB=2CD=16,
∵点E、F分别为AC、BC的中点,
∴EF=AB=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
23、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)详见解析;(3)2
【解析】
由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:
,即,从而解得:,
(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,
(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,
设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,
因此线段PQ中点M所经过的路径长为.
【详解】
由题意得,,,
则,
,,
,
∽,
,即,
解得:,
故答案为:,,
存在,
,
当时,四边形PDBQ为平行四边形,
,
解得:,
则当时,四边形PDBQ为平行四边形,
以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,
由题意得:,
当时,点的坐标为,
当时,点的坐标为,
设直线的解析式为:,
则,
解得:,
直线的解析式为:,
由题意得:点P的坐标为,点Q的坐标为,
在运动过程中PQ的中点M的坐标为,
当时,,
点M在直线上,
作轴于N,
则,,
由勾股定理得,,
线段PQ中点M所经过的路径长为.
本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.
25、详见解析.
【解析】
根据HL证明Rt△BDF≌Rt△ADC,进而解答即可.
【详解】
∵AD⊥BC,∴∠BDF=∠ADC=90°.
在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC.
又∵∠BFD=∠AFE,∴∠AEF=∠BDF=90°,∴BE⊥AC.
本题考查了全等三角形的判定和性质,关键是根据HL证明Rt△BDF≌Rt△ADC.
26、(1)见解析;(2)见解析;(3)四边形AECF是菱形
【解析】
(1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.
【详解】
(1)证明:∵D,E分别为AC,BC的中点, ∴AB∥EF,∵AB∥EF,AM∥BC
∴四边形ABEF是平行四边形
(2)证明:∵AM∥BC
∴∠FAC=∠ACE,∠AFE=∠CEF
∵AD=DC
∴ΔADF≌ΔCDE
∴DE=DF
∴四边形AECF是平行四边形
又∵四边形ABEF是平行四边形
∴AB=EF
∵AB=AC
∴AC=EF
∴平行四边形AECF是矩形
(3)当∠BAC=90°时,四边形AECF是菱形。
理由: ∵∠BAC=90°,BE=CE, ∴AE=BE=EC, ∵四边形ABEF是平行四边形, 四边形AECF是平行四边形, ∴AF=BE,AE=FC, ∴AE=EC=FC=AF, ∴四边形AECF是菱形.
本题考查了平行四边形的性质与判定,矩形的判定与菱形的判定,解题的关键是熟练掌握性质与判定.
题号
一
二
三
四
五
总分
得分
批阅人
笔试
面试
体能
甲
83
79
90
乙
85
80
75
丙
80
90
73
相关试卷
这是一份2024年广东省梅州大埔县联考数学九上开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省梅州大埔县联考2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。
这是一份广东省梅州大埔县联考2023-2024学年数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列函数是关于的反比例函数的是,下列事件中,必然事件是,如图,点P等内容,欢迎下载使用。