终身会员
搜索
    上传资料 赚现金

    广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】

    立即下载
    加入资料篮
    广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第1页
    广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第2页
    广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】

    展开

    这是一份广东省深圳市星火教育2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在矩形ABCD中,AB=3,BC=4,E是BC上一点,且与B、C不重合,若AE是整数,则AE等于( )
    A.3B.4C.5D.6
    2、(4分)已知一组数据5,5,6,6,6,7,7,则这组数据的方差为( )
    A.B.C.D.6
    3、(4分)欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
    A.的长B.的长C.的长D.的长
    4、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为( )
    A.10B.20
    C.15D.25
    5、(4分)在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:
    则下列说法正确的是( )
    A.中位数是7.5B.中位数是8C.众数是8D.平均数是8
    6、(4分)如图,△ABC 称为第 1 个三角形,它的周长是 1,以它的三边中点为顶点组成第 2 个三角形,再以第 2 个三角形的三边中点为顶点组成第 3 个三角形,以此类推,则第 2019 个三角形的周长为( )
    A.B.C.D.
    7、(4分)下列图象中不可能是一次函数的图象的是( )
    A.B.C.D.
    8、(4分)使有意义的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
    10、(4分)若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.
    11、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
    12、(4分)如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.
    13、(4分)一个等腰三角形的周长为12cm,设其底边长为y cm,腰长为x cm,则y与x的函数关系是为_____________________.(不写x的取值范围)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:
    (1)求图中的值,并求出所在直线方程;
    (2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟
    ①求所在直线的函数解析式;
    ②该运动员跑完赛程用时多少分钟?
    15、(8分)问题提出:
    (1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.
    问题探究:
    (2)如图3,在(1)的条件下,若,,且, ,
    ①求的度数.
    ②过点A作直线,交直线于点E,.请求出线段的长.

    16、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
    17、(10分)我们给出如下定义,如果一个四边形有一条对角线能将其分成一个等边三角形和一个直角三角形,那么这个四边形叫做等垂四边形,这条对角线叫做这个四边形的等垂对角线.
    (1)已知是四边形的等垂对角线,,均为钝角,且比大,那么________.
    (2)如图,已知与关于直线对称,、两点分别在、边上,,,.求证:四边形是等垂四边形。
    18、(10分)如图,在平面直角坐标系中,点是原点,四边形是菱形,点的坐标为,点在轴的负半轴上,直线与轴交于点,与轴交于点.
    (1)求直线的解析式;
    (2)动点从点出发,沿折线方向以1个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简的结果是______
    20、(4分)在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.
    21、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.
    22、(4分)如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.
    23、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;
    (1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
    (2)图②中若DE︰EC=3︰1,计算BF︰FC= ;图③中若DE︰EC=4︰1,计算BF︰FC= ;
    (3)图④中若DE︰EC=︰1,猜想BF︰FC= ;并证明你的结论
    25、(10分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)
    (1)两个班的平均得分分别是多少;
    (2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.
    26、(12分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:
    (1)求一次函数的表达式;
    (2)求直线AB与坐标轴围成的三角形的面积;
    (3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由勾股定理可求AC的长,即可得AE的范围,则可求解.
    【详解】
    解:连接AC,
    ∵在矩形ABCD中,AB=3,BC=4
    ∴AC==5
    ∴E是BC上一点,且与B、C不重合
    ∴3<AE<5,且AE为整数
    ∴AE=4
    故选B.
    本题考查了矩形的性质,勾股定理,熟练运用矩形的性质是本题的关键.
    2、A
    【解析】
    先求出这组数据的平均数,然后代入方差计算公式求出即可.
    【详解】
    解:∵平均数=(5+5+6+6+6+7+7)=6,
    S2= [(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]= .
    故选:A.
    本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    3、B
    【解析】
    【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
    【解答】用求根公式求得:



    AD的长就是方程的正根.
    故选B.
    【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
    4、C
    【解析】
    根据平行四边形的性质求解即可.
    【详解】
    ∵四边形ABCD是平行四边形

    ∵AC+BD=20

    ∴△AOB的周长
    故答案为:C.
    本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.
    5、A
    【解析】
    分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.
    【详解】
    ∵共10名评委,
    ∴中位数应该是第5和第6人的平均数,为7分和8分,
    ∴中位数为:7.5分,
    故A正确,B错误;
    ∵成绩为6分和8分的并列最多,
    ∴众数为6分和8分,
    故C错误;
    ∵平均成绩为:=8.5分,
    故D错误,
    故选:A.
    本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.
    6、B
    【解析】
    根据三角形的中位线等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后根据指数的变化规律求解即可.
    【详解】
    解:根据三角形中位线定理可得第 2 个三角形的各边长都等于第 1 个三角形各边的一半,
    ∵第 1 个三角形的周长是 1,
    ∴第 2 个三角形的周长=第 1 个三角形的周长 1×= ,
    第 3 个三角形的周长为=第 2 个三角形的周长×=( )²,
    第 4 个三角形的周长为=第 3 个三角形的周长()²×=( )³,

    ∴第 2019 个三角形的周长═()2018= .
    故选B.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出后一个三角形的周长等于上一个三角形的周长的一半是解题的关键.
    7、C
    【解析】
    分析:分别根据四个答案中函数的图象求出m的取值范围即可.
    详解:A.由函数图象可知:,解得:1<m<3;
    B.由函数图象可知,解得:m=3;
    C.由函数图象可知:,解得:m<1,m>3,无解;
    D.由函数图象可知:,解得:m<1.
    故选C.
    点睛:本题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.
    8、C
    【解析】
    根据二次根式的非负性可得,解得:
    【详解】
    解:∵使有意义,

    解得
    故选C
    本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
    详解:∵点A的坐标为(2,4)且OA=AB,
    ∴O(0,0),B(4,0),C(6,-4),D(8,0),
    2017÷8=252……1,
    ∴b==2.
    点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
    10、
    【解析】
    把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.
    【详解】
    ∵直线y=kx+3的图象经过点(2,0),
    ∴0=2k+3,
    解得k=-,
    则不等式kx+3>0为-x+3>0,
    解得:x0,
    解得k>3.
    故答案为:k>3
    此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>0
    21、(3,0)
    【解析】
    把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.
    【详解】
    解:把A(1,2)代入可得:
    解得:

    ∴把代入可得:
    解得:
    ∴B(3,0)
    故答案为(3,0)
    本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.
    22、1
    【解析】
    根据平行线分线段成比例定理列出比例式,代入计算得到答案.
    【详解】
    解:∵AB∥CD∥EF,
    ,.
    解得,BD=1,
    故答案为:1.
    本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    23、2
    【解析】
    解:∵四边形ABCD是菱形,AC=2,BD=,
    ∴∠ABO=∠CBO,AC⊥BD.
    ∵AO=1,BO=,
    ∴AB=2,
    ∴sin∠ABO==
    ∴∠ABO =30°,
    ∴∠ABC=∠BAC =60°.
    由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
    ∵∠ABO=∠CBO,
    ∴BE=BF,
    ∴△BEF是等边三角形,
    ∴∠BEF=60°,
    ∴∠OEF=60°,
    ∴∠AEO=60°,
    ∵∠BAC =60°.
    ∴△AEO是等边三角形,,
    ∴AE=OE,
    ∴BE=AE,同理BF=FC,
    ∴EF是△ABC的中位线,
    ∴EF=AC=1,AE=OE=1.
    同理CF=OF=1,
    ∴五边形AEFCD的周长为=1+1+1+2+2=2.
    故答案为2.
    二、解答题(本大题共3个小题,共30分)
    24、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)
    【解析】
    试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.
    解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°
    ∴∠BAF=∠CFE
    ∵∠B=∠C=90°
    ∴△ABF∽△FCE
    ∴BF︰CE=AB︰FC=AF︰FE
    ∴AB︰AF=BF︰FE
    ∵∠B=∠AFE=90°
    ∴△ABF∽△AFE
    ∴△ABF∽△AFE∽△FCE
    ∵DE︰EC=2︰1
    ∴FE︰EC=2︰1
    ∴BF︰FC=1︰1
    (2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;
    (3)∵DE︰EC=︰1
    ∴FE︰EC=︰1
    ∴BF︰FC=1︰(n-1).
    考点:相似三角形的综合题
    点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
    25、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.
    【解析】
    (1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.
    【详解】
    解:(1)一班的平均得分=(95+85+90)÷3=90,
    二班的平均得分=(90+95+85)÷3=90,
    (2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,
    二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,
    所以一班的卫生成绩高.
    本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.
    26、(1)y=-x-2;(2)2;(3)P(-)
    【解析】
    【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;
    (2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;
    (3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点P的位置,求出直线BA′的解析式,可得出点P的坐标.
    【详解】(1)把A(-1,-1)B(1,-3)分别代入y=kx+b,得:
    ,解得:,
    ∴一次函数表达式为:y=-x-2;
    (2)设直线与x轴交于C,与y轴交于D,y=0代入y=-x-2得x=-2,∴OC=2,
    x=0代入y=-x-2 得:y=-2,∴OD=2,
    ∴S △COD =×OC×OD=×2×2=2;
    (3)点A关于x的对称点A′,连接BA′交x轴于P,则P即为所求,
    由对称知:A′(-1,1),设直线A′B解析式为y=ax+c,
    则有,解得:,
    ∴y=-2x-1,
    令y=0得, -2x-1=0, 得x=- ,∴P(-).
    【点睛】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称-最短路线问题,熟练掌握待定系数法的应用是解题的关键.
    题号





    总分
    得分
    批阅人
    成绩(分)
    6
    7
    8
    9
    10
    人数
    3
    2
    3
    1
    1
    门窗
    桌椅
    地面
    一班
    85
    90
    95
    二班
    95
    85
    90

    相关试卷

    2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】:

    这是一份2024-2025学年广东省深圳市外国语学校数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省深圳市星火教育2023-2024学年九上数学期末检测试题含答案:

    这是一份广东省深圳市星火教育2023-2024学年九上数学期末检测试题含答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map