广东省深圳市深圳实验学校初中部联考2025届数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列关于一次函数的说法,错误的是( )
A.图象经过第一、二、四象限
B.随的增大而减小
C.图象与轴交于点
D.当时,
2、(4分)下列各组数中不能作为直角三角形三边长的是( )
A.5,13,12B.,1,2C.6,7,10D.3,4,5
3、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4, 5, 6B.5, 12, 13C.2, 3, 4D.1, ,3
4、(4分)下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是( )
A.中国馆的坐标为
B.国际馆的坐标为
C.生活体验馆的坐标为
D.植物馆的坐标为
5、(4分)已知|a+1|+=0,则b﹣1=( )
A.﹣1B.﹣2C.0D.1
6、(4分)在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为( )
A.向左平移了个单位长度B.向下平移了个单位长度
C.横向压缩为原来的一半D.纵向压缩为原来的一半
7、(4分)如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于 BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为( ).
A.17B.16C.15D.14
8、(4分)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是( )
A.7B.5C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
10、(4分)已知一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),则关于x的方程x+2=mx+n的解是__________.
11、(4分) 的计算结果是___________.
12、(4分)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.
13、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.
15、(8分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;
(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.
16、(8分)如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.
(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形.
(2)已知BE=2cm,DF=3cm,求EF的长.
17、(10分)如图,直线AB:y=x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上一点,过点C作CD⊥x轴于点D,且CD的长为,P是x轴上的动点,N是直线AB上的动点.
(1)直接写出A,B两点的坐标;
(2)如图①,若点M的坐标为(0,),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.
(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.
18、(10分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.
(1)当在点的右侧时,求证:四边形是平形四边形.
(2)连结,当四边形恰为矩形时,求的长.
(3)如图2,设,,记点与之间的距离为,直接写出的所有值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 .
20、(4分)将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.
21、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
22、(4分)在●〇●〇〇●〇〇〇●〇〇〇〇●〇〇〇〇〇中,空心圈“〇”出现的频率是_____.
23、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y=kx+b(k≠0)与两坐标轴分别交于点B、C,点A的坐标为(﹣2,0),点D的坐标为(1,0).
(1)求直线BC的函数解析式.
(2)若P(x,y)是直线BC在第一象限内的一个动点,试求出△ADP的面积S与x的函数关系式,并写出自变量x的取值范围.
(3)在直线BC上是否存在一点P,使得△ADP的面积为3?若存在,请直接写出此时点P的坐标,若不存在,请说明理由.
25、(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
求证:DF∥AC.
26、(12分)2019车8月8日至18日,第十八届“世警会”首次来到亚洲在成都举办武侯区以相关事宜为契机,进一步改善区域生态环境.在天府吴园道部分地段种植白芙蓉和醉芙蓉两种花卉.经市场调查,种植费用y(元)与种植面积x(m2)之间的函数关系如图所示.
(1)请直接写出两种花卉y与x的函数关系式;
(2)白芙蓉和醉芙蓉两种花卉的种植面积共1000m2,若白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,那么应该怎样分配两种花卉的种植面积才能使种植总费用最少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由,可知图象经过第一、二、四象限;由,可得随的增大而减小;图象与轴的交点为;当时,;
【详解】
∵,
∴图象经过第一、二、四象限,
A正确;
∵,
∴随的增大而减小,
B正确;
令时,,
∴图象与轴的交点为,
∴C正确;
令时,,
当时,;
D不正确;
故选:D.
本题考查一次函数的图象及性质;熟练掌握一次函数解析式中,与对函数图象的影响是解题的关键.
2、C
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、52+122=132,故不是直角三角形,故选项正确;
B、2+12=22,故是直角三角形,故选项错误;
C、62+72≠102,故是直角三角形,故选项错误;
D、32+42=52,故是直角三角形,故选项错误.
故选:C.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.
【详解】
解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;
C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
4、A
【解析】
根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.
【详解】
解:根据题意可建立如下所示平面直角坐标系,
A、中国馆的坐标为(-1,-2),故本选项正确;
B、国际馆的坐标为(3,-1),故本选项错误;
C、生活体验馆的坐标为(7,4),故本选项错误;
D、植物馆的坐标为(-7,-4),故本选项错误.
故选:A.
此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.
5、B
【解析】
根据非负数的性质求出a、b的值,然后计算即可.
【详解】
解:∵|a+1|+=0,
∴a+1=0,a-b=0,
解得:a=b=-1,
∴b-1=-1-1=-1.
故选:B.
本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.
6、C
【解析】
∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,
∴该正方形在纵向上没有变化.
又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,
∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.
故选C.
7、B
【解析】
根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.
【详解】
由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,
∴AF=AB,EF=EB,
∵AD∥BC,
∴∠FAE=∠AEB,
∴∠AEB=∠BAE,
∴BA=BE,
∴BA=BE=AF=FE,
∴四边形ABEF是菱形,
∴AE⊥BF
∵BF=12,AB=10,
∴BO=BF=6
∴AO=
∴AE=2AO=16
故选B.
本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.
8、B
【解析】
首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.
【详解】
解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,
∴Rt△AEC≌Rt△CDB
又∵AE=7,BD=2,
∴CE=BD=2,AE=CD=7,
DE=CD-CE=7-2=5.
此题主要考查直角三角形的全等判定,熟练运用即可得解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据一次函数的性质,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小,从而得出答案.
【详解】
一次函数y=x+1,,y随x的增大而减小
∵x1<x2
∴y1>y2
故答案为:>
本题考查了一次函数的增减性,熟练掌握相关知识点是解题关键.
10、x=-4
【解析】
先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.
【详解】
∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),
∴ ,
解得 ,
∴ .
∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,
∴关于x的方程x+2=mx+n的解是 ,
故答案为:.
本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.
11、3.5
【解析】
原式=4-=3=3.5,
故答案为3.5.
12、
【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.
【详解】
解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.
本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.
13、乙
【解析】
从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
【详解】
解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
乙的成绩为7,7,8,9,8,9,10,9,9,9,
=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
∴S2乙<S2甲.
故答案为:乙.
本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
解:因为DE∥BC,
所以△ADE∽△ABC,
所以.
又S△ADE︰S四边形BCED=1︰2,
所以S△ADE︰S△ABC=1︰3,
即.而,所以.
15、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.
【解析】
(1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;
(2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP= BP′,得到四边形BPEP′是正方形.
【详解】
(1)AM⊥BN
证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABM=∠BCN=90°
∵BM=CN,
∴△ABM≌△BCN
∴∠BAM=∠CBN
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°
∴AM⊥BN.
(2)四边形BPEP′是正方形.
△A′P′B是△APB绕着点B逆时针旋转90º所得,
∴BP= BP′,∠P′BP=90º.
又由(1)结论可知∠APB=∠A′P′B=90°,
∴∠BP′E=90°.
所以四边形BPEP′是矩形.
又因为BP= BP′,所以四边形BPEP′是正方形.
此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.
16、(1)见解析;(2)5cm.
【解析】
【分析】(1)根据旋转角度、旋转方向、旋转点找出各点的对应点,顺次连接即可得出;
(2)首先证明△ABE≌△ADM,进而得到∠MAF=45°;证明△EAF≌△MAF,得到EF=FG问题即可解决.
【详解】(1)如图所示;
(2)由(1)知:△ADM≌△ABE,M、D、F共线,
∴AD=AB,AM=AE,∠MAD=∠BAE,MD=BE=2,
∵四边形ABCD为正方形,∠EAF=45°,∴∠BAE+∠DAF=45°,
∴∠MAD+∠DAF=45°,
∴△AMF≌△AEF(SAS),
∴EF=MF,
∵MF=MD+DF,
∴EF=MF=MD+DF=2+3=5cm.
【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质,熟练掌握和灵活运用相关性质是解题的关键.
17、(1)点A(﹣4,0),点B(0,2);(2)点P(﹣1,0)或(﹣7,0)或(7,0);(3)S△BFC=.
【解析】
(1)令x=0,y=0可求点A,点B坐标;
(2)分OM为边,OM为对角线两种情况讨论,由平行四边形的性质可求点P坐标;
(3)过点C作CG⊥AB,交x轴于点G,由题意可得点C坐标,即可求直线CG解析式为:y=−2x+,可得点G坐标,由锐角三角函数和角平分线的性质可得,可求点E坐标,用待定系数法可求直线CF解析式,可求点F坐标,即可求△BFC的面积.
【详解】
(1)当x=0时,y=2,
当y=0时,0=×x+2
∴x=﹣4
∴点A(﹣4,0),点B(0,2)
故答案为:(﹣4,0),(0,2)
(2)设点P(x,0)
若OM为边,则OM∥PN,OM=PN
∵点M的坐标为(0, ),
∴OM⊥x轴,OM=
∴PN⊥x轴,PN=
∴当y=时,则=x+2
∴x=﹣1
当y=﹣时,则﹣=x+2
∴x=﹣7
∴点P(﹣1,0),点P(﹣7,0)
若OM为对角线,则OM与PN互相平分,
∵点M的坐标为(0,),点O的坐标(0,0)
∴OM的中点坐标(0,)
∵点P(x,0),
∴点N(﹣x,)
∴=×(﹣x)+2
∴x=7
∴点P(7,0)
综上所述:点P(﹣1,0)或(﹣7,0)或(7,0)
(3)∵CD=,即点C纵坐标为,
∴=x+2
∴x=3
∴点C(3,)
如图,过点C作CG⊥AB,交x轴于点G,
∵CG⊥AB,
∴设直线CG解析式为:y=﹣2x+b
∴=﹣2×3+b
∴b=
∴直线CG解析式为:y=﹣2x+,
∴点G坐标为(,0)
∵点A(﹣4,0),点B(0,2)
∴OA=4,OB=2,AG=
∵tan∠CAG=
∴
∵∠ACF=45°,∠ACG=90°
∴∠ACF=∠FCG=45°
∴,且AE+EG=
∴AE=
∴OE=AE﹣AO=
∴点E坐标为(,0)
设直线CE解析式为:y=mx+n
∴
解得:m=3,n=
∴直线CE解析式为:y=3x
∴当x=0时,y=
∴点F(0,)
∴BF=
∴S△BFC=.
本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,锐角三角函数等知识,求出点E坐标是本题的关键.
18、(1)见解析;(2)FG=;(3)d=14或.
【解析】
(1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;
(2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;
(3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.
【详解】
(1)∵四边形APEF是菱形
∴AP∥EF,∠APF=∠EPF=∠APE,
∵四边形PBCD是菱形
∴PB∥CD,∠CDB=∠PDB=∠CDP
∴∠APE=∠PDC
∴∠FPE=∠BDP
∴PF∥BD,且AP∥EF
∴四边形四边形FGBP是平形四边形;
(2)若四边形DFPG恰为矩形
∴PD=FG,PE=DE,EF=EG,
∴PD=2EF
∵四边形APEF是菱形,四边形PBCD是菱形
∴AP=EF,PB=PD
∴PB=2EF=2AP,且AB=10
∴FG=PB=.
(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,
∵FE=2EG,
∴PB=FG=3EG,EF=AP=2EG
∵AB=10
∴AP+PB=5EG=10
∴EG=2,
∴AP=4,PB=6=BC,
∵∠ABC=120°,
∴∠CBH=60°,且CH⊥AB
∴BH=BC=3,CH=BH=3
∴AH=13
∴AC==14
若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H
∵FE=2EG,
∴PB=FG=EG,EF=AP=2EG
∵AB=10,
∴3EG=10
∴EG=
∴BP=BC=
∵∠ABC=120°,
∴∠CBH=60°,且CH⊥AB
∴BH=BC=,CH=BH=
∴AH=
∴AC=
综上所述:d=14或.
本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
∵,
∴=0,b-2=0,解得a=3,b=2.
∵直角三角形的两直角边长为a、b,
∴该直角三角形的斜边长=.
20、两组对边分別平行的四边形是平行四边形
【解析】
根据平行四边形的判定方法即可求解.
【详解】
解:∵两块相同的含有30°角的三角尺
∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°
∴AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.
21、k≥1且k≠3.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
【详解】
去分母得:x+k+2x=x+1,
解得:x=,
由分式方程的解为非正数,得到⩽0,且≠−1,
解得:k≥1且k≠3,
故答案为k≥1且k≠3.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
22、0.1
【解析】
用空心圈出现的频数除以圆圈的总数即可求解.
【详解】
解:由图可得,总共有20个圆,出现空心圆的频数是15,频率是15÷20=0.1.
故答案是:0.1.
考查了频率的计算公式:频率=频数÷数据总数,是需要识记的内容.
23、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)S=﹣x+6(0<x<6);(3)点P的坐标是(3,2),P′(9,﹣2).
【解析】
(1)设直线BC的函数关系式为y=kx+b(k≠0),把B、C的坐标代入求出即可;
(2)求出y=﹣x+4和AD=3,根据三角形面积公式求出即可;
(3)把S=3代入函数解析式,求出x,再求出y即可.
【详解】
解:(1)设直线BC的函数关系式为y=kx+b(k≠0),
由图象可知:点C坐标是(0,4),点B坐标是(6,0),代入得:
,
解得:k=﹣,b=4,
所以直线BC的函数关系式是y=﹣x+4;
(2)∵点P(x,y)是直线BC在第一象限内的点,
∴y>0,y=﹣x+4,0<x<6,
∵点A的坐标为(﹣2,0),点D的坐标为(1,0),
∴AD=3,
∴S△ADP=×3×(﹣x+4)=﹣x+6,
即S=﹣x+6(0<x<6);
(3)当S=3时,﹣x+6=3,
解得:x=3,y=﹣×3+4=2,
即此时点P的坐标是(3,2),
根据对称性可知当当P在x轴下方时,可得满足条件的点P′(9,﹣2).
本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC的解析式是解此题的关键.
25、见解析;
【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.
【详解】
连接BD交AC于点O.
∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
26、(1)y=,y=100x(x≥0);(2)当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少
【解析】
(1)根据函数图象中的数据可以求得两种花卉y与x的函数关系式;
(2)根据(1)中的函数解析式和题意,利用一次函数的性质可以求得怎样分配两种花卉的种植面积才能使种植总费用最少.
【详解】
(1)当0≤x≤200时,设白芙蓉对应的函数解析式为y=ax,
200a=24000,得a=120,
即当0≤x≤200时,白芙蓉对应的函数解析式为y=120x,
当x>200时,设白芙蓉对应的函数解析式为y=bx+c,
,得,
即当x>200时,白芙蓉对应的函数解析式为y=80x+8000,
由上可得,白芙蓉对应的函数解析式为y=
设醉芙蓉对应的函数解析式为y=dx,
400d=40000,得d=100,
即醉芙蓉对应的函数解析式为y=100x(x≥0);
(2)设白芙蓉种植面积为em2,则醉芙蓉种植面积为(1000-e)m2,种植的总费用为w元,
∵白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,
∴100≤e≤3(1000-e),
解得,100≤e≤750,
当100≤e≤200时,
w=120e+100(1000-e)=20e+100000,
∴当e=100时,w取得最小值,此时w=102000,
当200<e≤750时,
w=80e+8000+100(1000-e)=-20e+108000,
∴当e=750时,w取得最小值,此时w=93000,1000-e=250,
由上可得,当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少,
答:当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
批阅人
广东省深圳市龙华新区2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份广东省深圳市龙华新区2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省深圳市福田区耀华实验学校2025届数学九年级第一学期开学联考试题【含答案】: 这是一份广东省深圳市福田区耀华实验学校2025届数学九年级第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省深圳市耀华实验学校九上数学开学检测模拟试题【含答案】: 这是一份2024年广东省深圳市耀华实验学校九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。