广东省市深圳市龙岗区南湾学校2024年数学九年级第一学期开学质量检测模拟试题【含答案】
展开这是一份广东省市深圳市龙岗区南湾学校2024年数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是( )
A.y=x+5B.y=x+10C.y=-x+5D.y=-x+10
2、(4分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数B.中位数C.众数D.方差
3、(4分)生物学家发现了一种病毒,其长度约为,将数据0. 00000032用科学记数法表示正确的是( )
A.B.C.D.
4、(4分)如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为( )
A.3B.4C.5D.6
5、(4分)如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
A.9B.10C.12D.14
6、(4分)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是( )
A.AC=BD B.AB=AC C.∠ABC=90°D.AC⊥BD
7、(4分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为( )
A.20B.21C.14D.7
8、(4分)如图.在正方形中,为边的中点,为上的一个动点,则的最小值是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的一元二次方程的一个根是2,则______.
10、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).
11、(4分)既是矩形又是菱形四边形是________.
12、(4分)如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=_____度.
13、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1
(2)(2a2+ab﹣2b2)(﹣ab)
15、(8分)计算:(1) ; (2) .
16、(8分)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+1的4分函数为:当x≤4时,y[4]=3x+1;当x>4时,y[4]=-3x-1.
(1)如果y=x+1的-1分函数为y[-1],
①当x=4时,y[-1]______;当y[-1]=-3时,x=______.
②求双曲线y=与y[-1]的图象的交点坐标;
(1)如果y=-x+1的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+1的0分函数y[0]的图象无交点时,直接写出k的取值范围.
17、(10分)如图,四边形ABCD是平行四边形, EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.
18、(10分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算.
20、(4分)如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.
21、(4分)如图,经过平移后得到,下列说法错误的是( )
A.B.
C.D.
22、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
23、(4分)如图,正比例函数的图象与反比例函数的图象交于A(2,1),B两点,则不等式的解集是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.
(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;
(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?
25、(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.
⑴ 在线段AC上找一点P(不能借助圆规),使得,画出点P的位置,并说明理由.
⑵ 求出⑴中线段PA的长度.
26、(12分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,样本容量为 ;
(2)补全条形统计图;
(3)“乘车”所对应的扇形圆心角为 °;
(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D. C,
∵P点在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周长为10,
∴2(x+y)=10,
∴x+y=5,即y=−x+5,
故选C.
点睛:本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x,y之间的关系是解题的关键.
2、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
3、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000032=3.2×10-1.
故选:B.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、C
【解析】
连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.
【详解】
连接CG,
∵四边形ABCD是矩形,
∴AB∥CD,∠B=90∘,AD=BC=8,
∴∠AGD=∠GDC,
∵DG平分∠ADC,
∴∠ADG=∠GDC,
∴∠AGD=∠ADG,
∴AG=AD=8,
∵AF⊥DG于点F,
∴FG=FD,
∵点E是CD的中点,
∴EF是△DGC的中位线,
∴EF=CG,
∵AB=14,
∴GB=6,
∴CG==10,
∴EF=×10=5,
故选C.
此题主要考查矩形的线段求解,解题的关键是熟知平行线的性质、三角形中位线定理及勾股定理的运用.
5、A
【解析】
利用平行四边形的性质即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=3,OD=OB==2,OA=OC=4,
∴△OBC的周长=3+2+4=9,
故选:A.
题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
6、D
【解析】
根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.
【详解】
A.∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,不是菱形,故本选项错误;
B.∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是菱形,故本选项错误;
C.∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出平行四边形ABCD是菱形,故本选项错误;
D.∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确.
故选D.
本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.
7、C
【解析】
分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.
【详解】
解:当点E在AB段运动时,
y=BC×BE=BC•x,为一次函数,由图2知,AB=3,
当点E在AD上运动时,
y=×AB×BC,为常数,由图2知,AD=4,
故矩形的周长为7×2=14,
故选:C.
本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
8、A
【解析】
根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.
【详解】
解:四边形为正方形
关于的对称点为.
连结交于点,如图:
此时的值最小,即为的长.
∵为中点,BC=4,
∴BE=2,
∴.
故选:A.
本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据关于x的一元二次方程x2−2ax+3a=0有一个根为2,将x=2代入方程即可求得a的值.
【详解】
解:∵关于x的一元二次方程x2−2ax+3a=0有一个根为2,
∴22−2a×2+3a=0,
解得,a=1,
故答案为1.
此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可解决问题.
10、>
【解析】
分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
∴y1=-3,y1=-6,
∵-3>-6,
∴y1>y1.
11、正方形
【解析】
根据正方形的判定定理即可得到结论.
【详解】
既是矩形又是菱形的四边形是正方形,
故答案为正方形.
本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
12、1
【解析】
设∠A=x.根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FCE=∠FEC=5x,则180°﹣5x=130°,即可求解.
【详解】
设∠A=x,
∵AB=BC=CD=DE=EF=FG,
∴根据等腰三角形的性质和三角形的外角的性质,得
∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FGE=∠FEG=5x,
则180°﹣5x=125°,
解,得x=1°,
故答案为1.
本题考查了等腰三角形的性质和三角形的外角的性质的运用;发现并利用∠CBD是△ABC的外角是正确解答本题的关键.
13、 (-1,-1)
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.
【详解】
菱形OABC的顶点O(0,0),B(2,2),得
D点坐标为(1,1).
每秒旋转45°,则第60秒时,得
45°×60=2700°,
2700°÷360=7.5周,
OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),
故答案为:(-1,-1).
本题考查了旋转的性质,利用旋转的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)2;(2)−a1b−a2b2+ab1.
【解析】
(1)根据0次幂和负整数指数幂,即可解答.
(2)根据单项式乘以多项式,即可解答.
【详解】
(1)(1.12﹣π)0+(﹣)﹣2﹣2×2﹣1
=1+2-2×
=1+2-1
=2.
(2)(2a2+ab-2b2)(-ab)
=−a1b−a2b2+ab1.
本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.
15、(1)0;(2)
【解析】
(1)根据二次根式的乘法公式:和合并同类二次根式法则计算即可;
(2)二次根式的乘法公式:、除法公式和合并同类二次根式法则计算即可.
【详解】
解:(1)
=
=0
(2)
=
=
=
此题考查的是二次根式的加减运算,掌握二次根式的乘法公式:、除法公式和合并同类二次根式法则是解决此题的关键.
16、(2)①5,-4或2;②(-2,-2);(2)k≥2
【解析】
(2)①先写出函数的-2分函数,代入即可,注意,函数值时-3时分两种情况代入;
②先写出函数的-2分函数,分两种情况和双曲线解析式联立求解即可;
(2)先写出函数的0分函数,画出图象,根据图象即可求得.
【详解】
解:(2)①y=x+2的-2分函数为:当x≤-2时,y[-2]=x+2;当x>-2时,y[-2]=-x-2.
当x=4时,y[-2]=-4-2=-5,
当y[-2]=-3时,
如果x≤-2,则有,x+2=-3,
∴x=-4,
如果x>-2,则有,-x-2=-3,
∴x=2,
故答案为-5,-4或2;
②当y=x+2的-2分函数为y[-2],
∴当x≤-2时,y[-2]=x+2①,
当x>-2时,y[-2]=-x-2②,
∵双曲线y=③,
联立①③解得,(舍),
∴它们的交点坐标为(-2,-2),
联立②③时,方程无解,
∴双曲线y=与y[-2]的图象的交点坐标(-2,-2);
(2)当y=-x+2的0分函数为y[0],
∴当x≤0时,y[0]=-x+2,
当x>0时,y[0]=x-2,如图,
∵正比例函数y=kx(k≠0)与y=-x+2的0分函数y[0]的图象无交点,
∴k≥2.
本题考查的是函数综合题,主要考查了新定义,函数图象的交点坐标的求法,解本题的关键是理解新定义的基础上借助已学知识解决问题.
17、118°
【解析】
根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.
【详解】
解:∵EB⊥BC,ED⊥CD.
∴∠EBC=∠EDC=90°
∵∠E=62°
∴∠C=360°-∠EBC-∠EDC-∠E=118°
∵四边形ABCD为平行四边形
∴∠A=∠C=118°
本题考查了平行四边形的性质及多边形的内角和等知识,熟练掌握四边形的内角和为360°与平行四边形对角相等是解题的关键.
18、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
(3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求得总人数;
(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
(3)根据中位数和众数的定义解答
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
首先化成同指数,然后根据积的乘方法则进行计算.
【详解】
解:原式=×(-1)=×(-1)=1×(-1)=-1.
考点:幂的简便计算.
20、.
【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.
【详解】
解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.
本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.
21、D
【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.
【详解】
A、AB∥DE,正确;
B、,正确;
C、AD=BE,正确;
D、,故错误,
故选D.
本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.
22、5
【解析】
由已知条件易得,,两者结合即可求得所求式子的值了.
【详解】
∵,
∴,
∵,
∴.
故答案为:5.
“能由已知条件得到和”是解答本题的关键.
23、﹣1<x<0或x>1
【解析】
根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
【详解】
∵正比例函数y=kx的图象与反比例函数y的图象交于A(1,1),B两点,∴B(﹣1,﹣1).
观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式kx的解集是﹣1<x<0或x>1.
故答案为:﹣1<x<0或x>1.
本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0);(2)采用方案一电话计费方式比较合算.
【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;
(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.
试题解析:(1)根据题意知,
方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);
方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0).
(2)当x=300时,方案一的费用y=15+0.2×300=75(元),
方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.
点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键.
25、 (1)详见解析;(2)线段PA的长度为.
【解析】
试题分析:
(1)利用方格纸可作出BC的垂直平分线交AC于点P,点P为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC2-PA2=AB2;
(2)由图中信息可得AB=4,AC=6,设PA=,则PC=PB=6-,在Rt△PAB中,由勾股定理建立方程解出即可.
试题解析:
⑴ 如图,利用方格纸作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.
∵在△APB中,∠A=90°,
∴,即: ,
∴ .
⑵ 由图可得:AC=6,AB=4,设PA=x,则PB=PC=6-x
∵在△PAB中,∠A=90°,
∴ ,解得:,即PA=.
答:线段PA的长度为.
26、(1)50;(2)图略;(3) ;(4)600.
【解析】
(1)用此次调查的乘车的学生数除以其占比即可得到样本容量;
(2)用调查的总人数减去各组人数即可得到步行的人数,即可补全统计图;
(3)用360°×40%即可得到“乘车”所对应的扇形圆心角度数;
(4)用2000乘以“步行”方式的占比即可.
【详解】
(1)样本容量为20÷40%=50
(2)步行的人数为50-20-10-5=15(人)
补全统计图如下:
(3)“乘车”所对应的扇形圆心角为40%×360°=144°
(4)估计该学校学生中选择“步行”方式的人数为2000×=600(人)
此题主要考查统计调查,解题的关键是根据统计图求出样本容量.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年广东省深圳市龙岗区南湾学校数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市龙岗区南湾学校2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共9页。
这是一份2023-2024学年广东省市深圳市龙岗区南湾学校数学九上期末质量检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列结论正确的是等内容,欢迎下载使用。