终身会员
搜索
    上传资料 赚现金

    高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析)

    立即下载
    加入资料篮
    高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析)第1页
    高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析)第2页
    高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析)

    展开

    这是一份高考数学压轴题讲义专题3.7三点共线证法多,斜率向量均可做专题练习(原卷版+解析),共36页。


    三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.
    【典例指引】
    类型一 向量法证三点共线
    例1 (2012北京理19)(本小题共14分)已知曲线:()
    (Ⅰ)若曲线是焦点在轴上的椭圆,求的取值范围;
    (Ⅱ)设=4,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点,求证:,,三点共线.
    【解析】
    类型二 斜率法证三点共线
    例2.(2017•上海模拟)已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.
    (1)求直线FN与直线AB的夹角θ的大小;
    (2)求证:点B、O、C三点共线.
    【解析】
    类型三 直线方程法证三点共线
    例3(2017•贵阳二模)已知椭圆C:=1(a>0)的焦点在x轴上,且椭圆C的焦距为2.
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.
    【解析】
    类型四 多种方法证三点共线
    例4.(2017•保定一模)设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=kx+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.
    (1)求椭圆的离心率;
    (2)求证:A,G,N三点共线.
    【解析】
    【扩展链接】
    1.给出,等于已知与的中点三点共线;
    2. 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线;
    【新题展示】
    1.【2019北京首都师范大学附属中学预测】在平面直角坐标系中,点在椭圆 上,过点的直线的方程为.
    (Ⅰ)求椭圆的离心率;
    (Ⅱ)若直线与轴、轴分别相交于两点,试求面积的最小值;
    (Ⅲ)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点三点共线.
    【思路引导】
    (Ⅰ)求得椭圆C的a,b,c,运用离心率公式计算即可得到所求值;(Ⅱ)在直线l中,分别令x=0,y=0,求得A,B的坐标,求得三角形OAB的面积,由P代入椭圆方程,运用基本不等式即可得到所求最小值;(Ⅲ)讨论①当x0=0时,P(0,±1),②当x0≠0时,设点Q(m,n),运用对称,分别求得Q的坐标,运用三点共线的条件:斜率相等,即可得证.
    2.【2019广东深圳2月调研】在平面直角坐标系中, 椭圆的中心在坐标原点,其右焦点为,且点 在椭圆上.
    (1)求椭圆的方程;
    (2)设椭圆的左、右顶点分别为、、是椭圆上异于,的任意一点,直线交椭圆于另一点,直线交直线于点, 求证:,,三点在同一条直线上.
    【思路引导】
    (1)(法一)由题意,求得椭圆的焦点坐标,利用椭圆的定义,求得,进而求得的值,即可得到椭圆的标准方程;
    (法二)设椭圆的方程为(),列出方程组,求得的值,得到椭圆的标准方程。
    (2)设,,直线的方程为,联立方程组,利用根与系数的关系和向量的运算,即可证得三点共线。
    3.【2019安徽合肥一模】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.
    (1)求椭圆的方程;
    (2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.
    【思路引导】
    (Ⅰ)由的周长为求得,由离心率求得,从而可得的值,进而可得结果;(Ⅱ)易知,当直线的斜率不存在时,三点共线;当直线的斜率存在时,由点差法可得 ,,即,.同理可得,从而可得结论.
    【同步训练】
    1.已知椭圆E:+=1(a>)的离心率e=,右焦点F(c,0),过点A(,0)的直线交椭圆E于P,Q两点.
    (1)求椭圆E的方程;
    (2)若点P关于x轴的对称点为M,求证:M,F,Q三点共线;
    (3)当△FPQ面积最大时,求直线PQ的方程.
    【思路点拨】(1)由椭圆的离心率公式,计算可得a与c的值,由椭圆的几何性质可得b的值,将a、b的值代入椭圆的方程计算可得答案;
    (2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;
    (3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,分析有(m2+3)y2+6my+3=0,设P(x1,y1),Q(x2,y2),结合根与系数的关系分析用y1.y2表示出△FPQ的面积,分析可得答案.
    【详细解析】
    2.已知椭圆C:+y2=1的左顶点为A,右焦点为F,O为原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.
    (Ⅰ)求△MFN的面积的最小值;
    (Ⅱ)证明;E,O,D三点共线.
    【思路点拨】(I)F(1,0),设M(0,t1),N(0,t2).不妨设t1>t2.由MF⊥NF,可得=0,化为:t1t2=﹣1.S△MFN=,利用基本不等式的性质即可得出.
    (II)A(﹣,0).设M(0,t),由(1)可得:N(0,﹣),(t≠±1).直线AM,AN的方程分别为:y=x+t,y=x﹣.分别与椭圆方程联立,利用一元二次方程的根与系数的关系可得kOE,kOD.只要证明kOE=kOD.即可得出E,O,D三点共线.
    【详细解析】
    3.已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.
    (1)求椭圆W的标准方程;
    (2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.
    【思路点拨】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;
    (2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由kAD•kAB=﹣1,代入求得=,由kBD﹣kBC=0,即可求证kBD=kBC,即可求证B,C,D三点共线.
    【详细解析】
    4.给定椭圆C:+=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆的“伴随圆”.已知A(2,1)是椭圆G:x2+4y2=m(m>0)上的点.
    (Ⅰ)若过点P(0,)的直线l与椭圆G有且只有一个公共点,求直线l被椭圆G的“伴随圆”G1所截得的弦长;
    (Ⅱ)若椭圆G上的M,N两点满足4k1k2=﹣1(k1,k2是直线AM,AN的斜率),求证:M,N,O三点共线.
    【思路点拨】(Ⅰ)将A代入椭圆方程,可得m,进而得到椭圆方程和伴椭圆方程,讨论直线l的斜率不存在和存在,设出l的方程,代入椭圆方程运用判别式为0,求得k,再由直线和圆相交的弦长公式,计算即可得到所求弦长;
    (Ⅱ)设直线AM,AN的方程分别为y﹣1=k1(x﹣2),y﹣1=k2(x﹣2),设点M(x1,y1),N(x2,y2),联立椭圆方程求得交点M,M的坐标,运用直线的斜率公式,计算直线OM,ON的斜⇐率相等,即可得证.
    【详细解析】
    5.已知椭圆,四点
    中恰有三点在椭圆C上
    (1)求椭圆的方程.
    (2)经过原点作直线(不与坐标轴重合)交椭圆于, 两点,
    轴于点,点在椭圆C上,且
    求证: , 三点共线.
    【思路点拨】根据椭圆上的点坐标求出椭圆方程;设出, ,则, ,再向量坐标化,得到,得到,最终得到;
    【详细解析】
    6.已知抛物线:()的焦点为,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点关于轴的对称点为.
    (1)求抛物线的方程;
    (2)证明:点在直线上.
    【思路点拨】(1)由交点坐标可得,求得可得抛物线方程;(2)设直线的方程为(),代入抛物线方程消去x整理得,再设,,进而得,可得直线的方程为,又,,故BD方程化为,令,得,即结论成立。
    【详细解析】
    7.已知椭圆: 的离心率与双曲线: 的离心率互为倒数,且经过点.
    (1)求椭圆的标准方程;
    (2)如图,已知是椭圆上的两个点,线段的中垂线的斜率为且与交于点, 为坐标原点,求证: 三点共线.
    【思路点拨】(1)由二者离心率互为倒数以及椭圆经过点,建立关于a,b,c的方程组从而得到椭圆的标准方程;
    (2)因为线段线段的中垂线的斜率为,所以线段所在直线的斜率为,线段所在直线的方程为,联立方程可得,利用韦达定理得到弦的中点的坐标,所以,所以点在定直线上,而两点也在定直线上,所以三点共线.
    【详细解析】
    8.设椭圆C:+=1(a>b>0)的右焦点为F1,离心率为,过点F1且与x轴垂直的直线被椭圆截得的线段长为.
    (1)求椭圆C的方程;
    (2)若y2=4x上存在两点M,N,椭圆C上存在两个点P,Q,满足:P,Q,F1三点共线,M,N,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.
    【思路点拨】(1)由题意可知:a=b2,a=c及a2=b2﹣c2,即可求得a和b的值,求得椭圆的标准方程;
    (2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.
    【详细解析】
    9.已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
    (I)若直线l1的倾斜角为,求△ABM的面积S的值;
    (Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
    【思路点拨】(I)由题意,直线l1的x=y+1,代入椭圆方程,由韦达定理,弦长公式即可求得△ABM的面积S的值;
    (Ⅱ)直线y=k(x﹣1),代入椭圆方程,由韦达定理,利用直线的斜率公式,即可求得kAM=kMN,A,M,N三点共线.
    【详细解析】
    10.已知椭圆C:=1(a>b>0)的长轴长为2,且椭圆C与圆M:(x﹣1)2+y2=的公共弦长为.
    (1)求椭圆C的方程.
    (2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且,求证:B,D,E三点共线..
    【思路点拨】(1)由题意得,由椭圆C与圆M:的公共弦长为,其长度等于圆M的直径,得椭圆C经过点,由此能求出椭圆C的方程.
    (2)设A(x1,y1),E(x2,y2),则B(﹣x1,﹣y1),D(x1,0).利用点差法求出,从而求出kAB•kAE=﹣1,进而求出kBE=kBD,由此能证明B,D,E三点共线.
    【详细解析】
    11.已知椭圆C:+=1(a>b>0)的离心率为,且过点(﹣1,),椭圆C的右焦点为A,点B的坐标为(,0).
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)已知纵坐标不同的两点P,Q为椭圆C上的两个点,且B、P、Q三点共线,线段PQ的中点为R,求直线AR的斜率的取值范围.
    【思路点拨】(Ⅰ)由椭圆的离心率为,且过点(﹣1,),列出方程组,求出a,b,由此能求出椭圆C的方程.
    (Ⅱ)依题意直线PQ过点(,0),且斜率不为0,设其方程为x=my+,联立,得4(3m2+4)y2+12my﹣45=0,由此利用韦达定理、中点坐标公式,结合已知条件能求出直线AR的斜率的取值范围.
    【详细解析】
    12.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,抛物线E:x2=4y的焦点是椭圆C的一个顶点.
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)若A,B分别是椭圆C的左、右顶点,直线y=k(x﹣4)(k≠0)与椭圆C交于不同的两点M,N,直线x=1与直线BM交于点P.
    (i)证明:A,P,N三点共线;
    (ii)求△OMN面积的最大值.
    【思路点拨】(Ⅰ)由题意知⇒a=2,b=1,c=,即可;
    (Ⅱ)(i)将直线y=k(x﹣4)(k≠0)代入椭圆C得:(1+4k2)x2﹣32k2x+64k2﹣4=0.则M(x1,k(x1﹣4)),N(x2,k(x2﹣4)).要证A,P,N三点共线,只证明共线即可,即证明成立.
    (ii)将直线y=k(x﹣4)(k≠0)变形为x=my+4,(m=).联立得(m2﹣4)y2+8my﹣12=0.
    |MN|=,点O到直线MN的距离d=.△OMN面积S=×|MN|×d即可.
    【详细解析】
    【题型综述】
    三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.
    【典例指引】
    类型一 向量法证三点共线
    例1 (2012北京理19)(本小题共14分)已知曲线:()
    (Ⅰ)若曲线是焦点在轴上的椭圆,求的取值范围;
    (Ⅱ)设=4,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点,求证:,,三点共线.
    方程为:,则,
    ,,
    欲证三点共线,只需证,共线
    即成立,化简得:
    将①②代入易知等式成立,则三点共线得证。学&科网
    类型二 斜率法证三点共线
    例2.(2017•上海模拟)已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.
    (1)求直线FN与直线AB的夹角θ的大小;
    (2)求证:点B、O、C三点共线.
    ∵kOB==,y1y2=﹣4,
    ∴kOB=kOC,∴点B、O、C三点共线.学&科网
    类型三 直线方程法证三点共线
    例3(2017•贵阳二模)已知椭圆C:=1(a>0)的焦点在x轴上,且椭圆C的焦距为2.
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.

    ==,
    即直线QN过点(1,0),
    又∵椭圆C的右焦点坐标为F(1,0),
    ∴三点N,F,Q在同一条直线上.学&科网
    类型四 多种方法证三点共线
    例4.(2017•保定一模)设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=kx+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.
    (1)求椭圆的离心率;
    (2)求证:A,G,N三点共线.
    【扩展链接】
    1.给出,等于已知与的中点三点共线;
    2. 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线;
    【新题展示】
    1.【2019北京首都师范大学附属中学预测】在平面直角坐标系中,点在椭圆 上,过点的直线的方程为.
    (Ⅰ)求椭圆的离心率;
    (Ⅱ)若直线与轴、轴分别相交于两点,试求面积的最小值;
    (Ⅲ)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点三点共线.
    【思路引导】
    (Ⅰ)求得椭圆C的a,b,c,运用离心率公式计算即可得到所求值;(Ⅱ)在直线l中,分别令x=0,y=0,求得A,B的坐标,求得三角形OAB的面积,由P代入椭圆方程,运用基本不等式即可得到所求最小值;(Ⅲ)讨论①当x0=0时,P(0,±1),②当x0≠0时,设点Q(m,n),运用对称,分别求得Q的坐标,运用三点共线的条件:斜率相等,即可得证.
    【解析】
    (Ⅰ)依题意可知,,所以椭圆离心率为.
    (Ⅱ)因为直线与轴,轴分别相交于两点,所以.
    令,由得,则.
    令,由得,则.
    所以的面积.
    因为点在椭圆 上,所以.
    所以.即,则.
    所以.
    当且仅当,即时,面积的最小值为.
    (Ⅲ)①当时,.当直线时,易得,此时,.
    因为,所以三点共线.同理,当直线时,三点共线.
    ②当时,设点,因为点与点关于直线对称,
    所以整理得
    解得所以点.
    又因为,,且


    所以 .所以点三点共线.
    综上所述,点三点共线.
    2.【2019广东深圳2月调研】在平面直角坐标系中, 椭圆的中心在坐标原点,其右焦点为,且点 在椭圆上.
    (1)求椭圆的方程;
    (2)设椭圆的左、右顶点分别为、、是椭圆上异于,的任意一点,直线交椭圆于另一点,直线交直线于点, 求证:,,三点在同一条直线上.
    【思路引导】
    (1)(法一)由题意,求得椭圆的焦点坐标,利用椭圆的定义,求得,进而求得的值,即可得到椭圆的标准方程;
    (法二)设椭圆的方程为(),列出方程组,求得的值,得到椭圆的标准方程。
    (2)设,,直线的方程为,联立方程组,利用根与系数的关系和向量的运算,即可证得三点共线。
    【解析】
    (1)(法一)设椭圆的方程为,
    ∵一个焦点坐标为,∴另一个焦点坐标为,
    ∴由椭圆定义可知,
    ∴,∴,∴椭圆的方程为.
    (法二)不妨设椭圆的方程为(),
    ∵一个焦点坐标为,∴,①
    又∵点在椭圆上,∴,②
    联立方程①,②,解得,,
    ∴椭圆的方程为.
    (2)设,,直线的方程为,
    由方程组消去,并整理得:,
    ∵,∴,,
    ∵直线的方程可表示为,
    将此方程与直线联立,可求得点的坐标为,
    ∴,

    ,所以,
    又向量和有公共点,故,,三点在同一条直线上.
    3.【2019安徽合肥一模】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.
    (1)求椭圆的方程;
    (2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.
    【思路引导】
    (Ⅰ)由的周长为求得,由离心率求得,从而可得的值,进而可得结果;(Ⅱ)易知,当直线的斜率不存在时,三点共线;当直线的斜率存在时,由点差法可得 ,,即,.同理可得,从而可得结论.
    【解析】
    (Ⅰ)由题意知,.
    又∵,∴,,
    ∴椭圆的方程为.
    (Ⅱ)易知,当直线的斜率不存在时,由椭圆的对称性知,中点在轴上,三点共线;
    当直线的斜率存在时,设其斜率为,且设.
    联立方程得相减得,
    ∴,
    ∴,,即,
    ∴.
    同理可得,∴,所以三点共线.
    【同步训练】
    1.已知椭圆E:+=1(a>)的离心率e=,右焦点F(c,0),过点A(,0)的直线交椭圆E于P,Q两点.
    (1)求椭圆E的方程;
    (2)若点P关于x轴的对称点为M,求证:M,F,Q三点共线;
    (3)当△FPQ面积最大时,求直线PQ的方程.
    【思路点拨】(1)由椭圆的离心率公式,计算可得a与c的值,由椭圆的几何性质可得b的值,将a、b的值代入椭圆的方程计算可得答案;
    (2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的思路引导求出、的坐标,由向量平行的坐标表示方法,思路引导可得证明;
    (3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,思路引导有(m2+3)y2+6my+3=0,设P(x1,y1),Q(x2,y2),结合根与系数的关系思路引导用y1.y2表示出△FPQ的面积,思路引导可得答案.
    (3)设直线PQ的方程为x=my+3.
    由方程组,得(m2+3)y2+6my+3=0,学&科网

    2.已知椭圆C:+y2=1的左顶点为A,右焦点为F,O为原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.
    (Ⅰ)求△MFN的面积的最小值;
    (Ⅱ)证明;E,O,D三点共线.
    【思路点拨】(I)F(1,0),设M(0,t1),N(0,t2).不妨设t1>t2.由MF⊥NF,可得=0,化为:t1t2=﹣1.S△MFN=,利用基本不等式的性质即可得出.
    (II)A(﹣,0).设M(0,t),由(1)可得:N(0,﹣),(t≠±1).直线AM,AN的方程分别为:y=x+t,y=x﹣.分别与椭圆方程联立,利用一元二次方程的根与系数的关系可得kOE,kOD.只要证明kOE=kOD.即可得出E,O,D三点共线.
    【详细解析】(I)F(1,0),设M(0,t1),N(0,t2).不妨设t1>t2.学&科网
    ∵MF⊥NF,∴=1+t1t2=0,化为:t1t2=﹣1.
    ∴S△MFN==≥=1.当且仅当t1=﹣t2=1时取等号.
    3.已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.
    (1)求椭圆W的标准方程;
    (2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.
    【思路点拨】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;
    (2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由kAD•kAB=﹣1,代入求得=,由kBD﹣kBC=0,即可求证kBD=kBC,即可求证B,C,D三点共线.
    (2)证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(﹣x1,﹣y1),C(x1,0),
    ∵A,D在椭圆上,,=0,即(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,
    ∴=﹣,学&科网
    由AD⊥AB,
    ∴kAD•kAB=﹣1,•=﹣1,•(﹣,)=﹣1,
    ∴=,
    ∴kBD﹣kBC=﹣=﹣=0,
    kBD=kBC,
    ∴B,C,D三点共线.学&科网
    4.给定椭圆C:+=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆的“伴随圆”.已知A(2,1)是椭圆G:x2+4y2=m(m>0)上的点.
    (Ⅰ)若过点P(0,)的直线l与椭圆G有且只有一个公共点,求直线l被椭圆G的“伴随圆”G1所截得的弦长;
    (Ⅱ)若椭圆G上的M,N两点满足4k1k2=﹣1(k1,k2是直线AM,AN的斜率),求证:M,N,O三点共线.
    【思路点拨】(Ⅰ)将A代入椭圆方程,可得m,进而得到椭圆方程和伴椭圆方程,讨论直线l的斜率不存在和存在,设出l的方程,代入椭圆方程运用判别式为0,求得k,再由直线和圆相交的弦长公式,计算即可得到所求弦长;
    (Ⅱ)设直线AM,AN的方程分别为y﹣1=k1(x﹣2),y﹣1=k2(x﹣2),设点M(x1,y1),N(x2,y2),联立椭圆方程求得交点M,M的坐标,运用直线的斜率公式,计算直线OM,ON的斜⇐率相等,即可得证.
    5.已知椭圆,四点
    中恰有三点在椭圆C上
    (1)求椭圆的方程.
    (2)经过原点作直线(不与坐标轴重合)交椭圆于, 两点,
    轴于点,点在椭圆C上,且
    求证: , 三点共线.
    【思路点拨】根据椭圆上的点坐标求出椭圆方程;设出, ,则, ,再向量坐标化,得到,得到,最终得到;

    6.已知抛物线:()的焦点为,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点关于轴的对称点为.
    (1)求抛物线的方程;
    (2)证明:点在直线上.
    【思路点拨】(1)由交点坐标可得,求得可得抛物线方程;(2)设直线的方程为(),代入抛物线方程消去x整理得,再设,,进而得,可得直线的方程为,又,,故BD方程化为,令,得,即结论成立。
    【详细解析】(1)依题意知,解得,学&科网
    所以抛物线的方程.
    (2)设直线的方程为(),

    7.已知椭圆: 的离心率与双曲线: 的离心率互为倒数,且经过点.
    (1)求椭圆的标准方程;
    (2)如图,已知是椭圆上的两个点,线段的中垂线的斜率为且与交于点, 为坐标原点,求证: 三点共线.
    【思路点拨】(1)由二者离心率互为倒数以及椭圆经过点,建立关于a,b,c的方程组从而得到椭圆的标准方程;
    (2)因为线段线段的中垂线的斜率为,所以线段所在直线的斜率为,线段所在直线的方程为,联立方程可得,利用韦达定理得到弦的中点的坐标,所以,所以点在定直线上,而两点也在定直线上,所以三点共线.
    【详细解析】(1)因为双曲线: 的离心率,学&科网
    而椭圆的离心率与双曲线的离心率互为倒数,所以椭圆的离心率为,
    设椭圆的半焦距为,则.①
    又椭圆经过点,所以.②
    ,③
    联立①②③,解得.
    所以椭圆的标准方程为.
    [来源:学&科&网]
    8.设椭圆C:+=1(a>b>0)的右焦点为F1,离心率为,过点F1且与x轴垂直的直线被椭圆截得的线段长为.
    (1)求椭圆C的方程;
    (2)若y2=4x上存在两点M,N,椭圆C上存在两个点P,Q,满足:P,Q,F1三点共线,M,N,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.
    【思路点拨】(1)由题意可知:a=b2,a=c及a2=b2﹣c2,即可求得a和b的值,求得椭圆的标准方程;
    (2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.
    由弦长公式|PQ|=•=,
    ∴四边形PMQN的面积S=|MN|•|PQ|=,
    令1+k2=t,(t>1),
    则S===4×(1+)>4,
    ∴S>4,
    综上可知:四边形PMQN的面积的最小值4.学&科网
    9.已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
    (I)若直线l1的倾斜角为,求△ABM的面积S的值;
    (Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
    【思路点拨】(I)由题意,直线l1的x=y+1,代入椭圆方程,由韦达定理,弦长公式即可求得△ABM的面积S的值;
    (Ⅱ)直线y=k(x﹣1),代入椭圆方程,由韦达定理,利用直线的斜率公式,即可求得kAM=kMN,A,M,N三点共线.


    10.已知椭圆C:=1(a>b>0)的长轴长为2,且椭圆C与圆M:(x﹣1)2+y2=的公共弦长为.
    (1)求椭圆C的方程.
    (2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且,求证:B,D,E三点共线..
    【思路点拨】(1)由题意得,由椭圆C与圆M:的公共弦长为,其长度等于圆M的直径,得椭圆C经过点,由此能求出椭圆C的方程.
    (2)设A(x1,y1),E(x2,y2),则B(﹣x1,﹣y1),D(x1,0).利用点差法求出,从而求出kAB•kAE=﹣1,进而求出kBE=kBD,由此能证明B,D,E三点共线.
    【详细解析】(1)由题意得,则.
    由椭圆C与圆M:的公共弦长为,
    其长度等于圆M的直径,
    即.
    又=,
    所以kAB•kAE=﹣1,
    即,
    所以
    所以
    又=,
    所以kBE=kBD,
    所以B,D,E三点共线.
    11.已知椭圆C:+=1(a>b>0)的离心率为,且过点(﹣1,),椭圆C的右焦点为A,点B的坐标为(,0).
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)已知纵坐标不同的两点P,Q为椭圆C上的两个点,且B、P、Q三点共线,线段PQ的中点为R,求直线AR的斜率的取值范围.
    【思路点拨】(Ⅰ)由椭圆的离心率为,且过点(﹣1,),列出方程组,求出a,b,由此能求出椭圆C的方程.
    (Ⅱ)依题意直线PQ过点(,0),且斜率不为0,设其方程为x=my+,联立,得4(3m2+4)y2+12my﹣45=0,由此利用韦达定理、中点坐标公式,结合已知条件能求出直线AR的斜率的取值范围.
    (Ⅱ)依题意直线PQ过点(,0),且斜率不为0,
    故可设其方程为x=my+,
    联立,消去x,得4(3m2+4)y2+12my﹣45=0,
    设点P(x1,y1),Q(x2,y2),R(x0,y0),直线AR的斜率为k,
    故,,
    ∴,∴k=,
    当m=0时,k=0,
    当m≠0时,k=,故|4m+|=4|m|+,
    ∴0<≤,
    ∴0<|k|,∴﹣,且k≠0,
    综上所述,直线AR的斜率的取值范围是[﹣].
    12.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,抛物线E:x2=4y的焦点是椭圆C的一个顶点.
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)若A,B分别是椭圆C的左、右顶点,直线y=k(x﹣4)(k≠0)与椭圆C交于不同的两点M,N,直线x=1与直线BM交于点P.
    (i)证明:A,P,N三点共线;
    (ii)求△OMN面积的最大值.
    【思路点拨】(Ⅰ)由题意知⇒a=2,b=1,c=,即可;
    (Ⅱ)(i)将直线y=k(x﹣4)(k≠0)代入椭圆C得:(1+4k2)x2﹣32k2x+64k2﹣4=0.则M(x1,k(x1﹣4)),N(x2,k(x2﹣4)).要证A,P,N三点共线,只证明共线即可,即证明成立.
    (ii)将直线y=k(x﹣4)(k≠0)变形为x=my+4,(m=).联立得(m2﹣4)y2+8my﹣12=0.
    |MN|=,点O到直线MN的距离d=.△OMN面积S=×|MN|×d即可.
    则M(x1,k(x1﹣4)),N(x2,k(x2﹣4)).
    ∴BM的方程为:,⇒P(1,)
    ∴).
    要证A,P,N三点共线,只证明共线即可,
    即证明成立.
    即证明2x1x2﹣5(x1+x2)﹣8=0,将①代入上式显然成立.
    ∴A,P,N三点共线.

    相关试卷

    高考数学压轴题讲义专题3.11切线处理情况多,曲线不同法定度专题练习(原卷版+解析):

    这是一份高考数学压轴题讲义专题3.11切线处理情况多,曲线不同法定度专题练习(原卷版+解析),共39页。

    高考数学压轴题讲义专题3.10判断点在圆内外,向量应用最厉害专题练习(原卷版+解析):

    这是一份高考数学压轴题讲义专题3.10判断点在圆内外,向量应用最厉害专题练习(原卷版+解析),共39页。

    高考数学压轴题讲义专题2.2导数定调情况多,参数分类与整合专题练习(原卷版+解析):

    这是一份高考数学压轴题讲义专题2.2导数定调情况多,参数分类与整合专题练习(原卷版+解析),共22页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map