广东省珠海市2024-2025学年数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,,下列条件中不能使的是( )
A.B.C.D.
2、(4分)如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于( )
A.1B.2C.3D.4
3、(4分)若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为( )
A.0B.2C.0或2D.0或﹣2
4、(4分)等腰三角形的两条边长分别为3和4,则其周长等于( )
A.10B.11C.10或11D.不确定
5、(4分)小明发现下列几组数据能作为三角形的边:①3,4,5; ②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有( )组
A.1B.2C.3D.4
6、(4分)如图,点在双曲线上,点在双曲线,轴,分别过点、向轴作垂线,垂足分别为、.若矩形的面积是,则的值为( )
A.B.C.D.
7、(4分)一元二次方程的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根
8、(4分)在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题“如a2>b2,则a>b”的逆命题是 ■ 命题(填“真”或“假”).
10、(4分)分解因式:____________
11、(4分)在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.
12、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
13、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:
(1);
(2).
15、(8分)(1)分解因式:x(x﹣y)﹣y(y﹣x)
(2)解不等式组,并把它的解集在数轴上表示出来.
16、(8分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
17、(10分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
收集数据如下:
七年级:
八年级:
整理数据如下:
分析数据如下:
根据以上信息,回答下列问题:
(1)a=______,b=______;
(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
18、(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.
(1)求直线的解析式;
(2)在线段上找一点,使得,线段与相交于点.
①求点的坐标;
②点在轴上,且,直接写出的长为 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
20、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
21、(4分)已知矩形的长a=,宽b=,则这个矩形的面积是_____.
22、(4分)一次函数的图象与轴交于点________;与轴交于点______.
23、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
(1)根据上图填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
25、(10分)如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴y轴分别交于点C、点D.若DB=DC,求直线CD对应的函数解析式.
26、(12分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题.
(1)①中的描述应为“ 6分m% ”,其中的m值为_________;扇形①的圆心角的大小是______;
(2)求这40个样本数据平均数、众数、中位数;
(3)若该校九年级共有160名学生,估计该校理化实验操作得满分的学生有多少人.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据条件和图形可得∠1=∠2,AD=AD,再根据全等三角形的判定定理分别添加四个选项所给条件进行分析即可.
【详解】
解:根据条件和图形可得∠1=∠2,AD=AD,
A、添加可利用SAS定理判定,故此选项不合题意;
B、添加可利用AAS定理判定,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加不能判定,故此选项符合题意;
故选:D .
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
2、D
【解析】
根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.
【详解】
解:∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∵AB∥CD,
∴∠ABM=∠BMC,
∴∠BMC=∠CBM,
∴BC=MC=2,
∵▱ABCD的周长是16,
∴BC+CD=8,
∴CD=6,
则DM=CD﹣MC=4,
故选:D.
本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.
3、C
【解析】
先依据平方根的定义和性质求得a,b的值,然后依据有理数的加法法则求解,再求立方根即可解答
【详解】
∵(﹣4)2=16,
∴a=±4,
∵b的一个平方根是2,
∴b=4,
当a=4时,
∴a+b=8,
∴8的立方根是2,
当a=﹣4时,
∴a+b=0,
∴0的立方根是0,
故选:C.
此题考查了平方根和立方根,解题关键在于求出a,b的值
4、C
【解析】
根据等腰三角形的性质即可判断.
【详解】
∵等腰三角形的两条边长分别为3和4
∴第三边为3或4,
故周长为10或11,故选C
此题主要考查等腰三角形的周长,解题的关键是熟知等腰三角形的性质.
5、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】
①∵
∴此三角形是直角三角形,符合题意;
②∵
∴此三角形是直角三角形,符合题意;
③∵
∴此三角形不是直角三角形,不符合题意;
④∵
∴此三角形不是直角三角形,不符合题意;
故其中能作为直角三角形的三边长的有2组
故选:B
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
6、A
【解析】
首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.
【详解】
过点A作AE⊥y轴于点E,
∵点A在双曲线上,
∴矩形EODA的面积为:4,
∵矩形ABCD的面积是8,
∴矩形EOCB的面积为:4+8=1,
则k的值为:xy=k=1.
故选A.
此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.
7、B
【解析】
求出△的值,利用根的判别式与方程根的关系即可判断.
【详解】
一元二次方程中,
a=2,b=3,c=-5,
△=49,
∴方程有两个不相等的实数根,
故选B.
本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.
8、C
【解析】
根据题意,易得这个不透明的袋子里有10个球,已知其中有2个白球,根据概率的计算公式可得答案.
【详解】
解:这个不透明的袋子里有10个球,其中2个白球,
小明随意地摸出一球,是白球的概率为:;
故选:C.
用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、假
【解析】
先写出命题的逆命题,然后在判断逆命题的真假.
解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,
假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.
故答案为假.
10、a(x+5)(x-5)
【解析】
先公因式a,然后再利用平方差公式进行分解即可.
【详解】
故答案为a(x+5)(x-5).
11、1
【解析】
根据三角形中位线的性质定理,解答即可.
【详解】
∵点D、E分别为AC、BC的中点,
∴AB=2DE=1(米),
故答案为:1.
本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.
12、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
13、(7,4)(2n﹣1,2n﹣1).
【解析】
根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.
【详解】
当x=0时,y=x+1=1,
∴点A1的坐标为(0,1).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
当x=1时,y=x+1=2,
∴点A2的坐标为(1,2).
∵四边形A2B2C2C1为正方形,
∴点B2的坐标为(3,2).
同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,
∴点Bn的坐标为(2n﹣1,2n﹣1).
故答案为:(7,4), (2n﹣1,2n﹣1)
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、或;
【解析】
移项后,提取公因式,进一步求解可得;
方程整理成一般式后利用求根公式计算可得.
【详解】
解:,
,
则,
或,
解得:或;
原方程整理成一般式为,
、、,
,
则.
此题考查了解一元二次方程因式分解法,配方法,以及公式法,熟练掌握各种解法是解本题的关键.
15、(1)(x﹣y)(x+y);(2)﹣2<x≤1
【解析】
分析:(1)根据提公因式法,可分解因式;
(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.
解:(1)原式=(x﹣y)(x+y);
(2)解不等式①1,得x>﹣2,
解不等式②,得x≤1,
把不等式①②在数轴上表示如图
,
不等式组的解集是﹣2<x≤1.
【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.
16、(1);(2)﹣4<x<0或x>1
【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
【详解】
解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),
∴m=1×(﹣4)=﹣4, ∴y=﹣,
将x=﹣4,y=n代入反比例解析式得:n=1,
∴A(﹣4,1),
∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,
解得:k=-1,b=-3, ∴y=﹣x﹣3;
在直线y=﹣x﹣3中,当y=0时,x=﹣3,
∴C(﹣3,0),即OC=3,
∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;
(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.
本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.
17、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
【解析】
(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
(2)从中位数、众数、方差进行分析,调查结论,
(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
【详解】
(1) a=20-1-10-1=8,b=(88+89)÷2=88.1
故答案为:8,88.1.
(2)你认为 八 年级知识竞赛的总体成绩较好
理由1:八年级成绩的中位数较高;
理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
或者
你认为 七 年级知识竞赛的总体成绩较好,
理由1:七年级的平均成绩较高;
理由2:低分段人数较少。 (答案不唯一,合理即可)
(3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
180+280=460人.
考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
18、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.
【解析】
(1)求出B,C两点坐标,利用待定系数法即可解决问题.
(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.
②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.
【详解】
(1)直线交轴于点,交轴于点,
,,
点在轴的负半轴上,且的面积为8,
,
,则,
设直线的解析式为即,
解得,
故直线的解析式为.
(2)①连接.
点是直线和直线的交点,故联立,
解得,即.
,故,且,
,,
,
,,
即,可求直线的解析式为,
点是直线和直线的交点,
故联立,解得,
即,.
②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.
则,
,,
,,
直线的解析式为,
设直线交轴于,则,
,
.
作,则,
可得直线的解析式为,
,
,
综上所述,满足条件的的值为8或.
本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
20、4
【解析】
根据题意可证明四边形EFGH为菱形,故可求出面积.
【详解】
∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,
∵E、F、G、H分别是四条边的中点,
∴AE=DG=BE=CG,AH=DH=BF=CF,
∴△AEH≌△DGH≌△BEF≌△CGF(SAS),
∴EH=EF=FG=GH,
∴四边形EFGH是菱形,
∵HF=2,EG=4,
∴四边形EFGH的面积为HF·EG=×2×4=4.
此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.
21、1
【解析】
根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.
【详解】
矩形的面积=ab
=×
=×1××3
=1,
故答案为:1.
本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.
22、
【解析】
分别令x,y为0,即可得出答案.
【详解】
解:∵当时,;当时,
∴一次函数的图象与轴交于点,与轴交于点.
故答案为:;.
本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
23、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
二、解答题(本大题共3个小题,共30分)
24、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.
【详解】
解:(1)由条形图数据可知:中位数填85,众数填1.
故答案为:85,1;
(2)因两班平均数相同,
但八(1)班的中位数高,
所以八(1)班的成绩较好.
(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
25、y=-1x-1
【解析】
解:设直线AB的解析式为y=kx+b,
把A(0,1)、点B(1,0)代入,得,
解得,
故直线AB的解析式为y=﹣1x+1;
将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,
∴DO垂直平分BC,
∴CD=AB,
∴点D的坐标为(0,﹣1),
∵平移后的图形与原图形平行,
∴平移以后的函数解析式为:y=﹣1x﹣1.
26、(1)10;;(2)8.3;9;8;(3)28
【解析】
(1)所占百分比=所求人数与总人数之比,即可求出m的值;再用乘以①所占的百分比,计算即可得解;
(2)先计算出H的值,用总人数减去其他分数段的人数即可;根据平均数的定义求出平均数;众数是一组数据中出现次数最多的数据;找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数进行解答;
(3)用九年级总学生人数乘以满分的人数所占的分数即可.
【详解】
解:(1),即m=10;
故答案为:10;.
(2)(人)
平均数:(分);
∵9出现了12次,次数最多,
∴众数:9分;
∵将40个数字按从小到大排列,中间第20、21两个数都是8,
∴中位数:=8(分);
故答案为:平均数8.3分,众数9分,中位数8分;
(3)(人)
故该校理化实验操作得满分的学生有28人.
本题属于基础题,考查了统计图、扇形统计图、平均数、确定一组数据的中位数和众数的能力.从不同的统计图中得到必要的信息是解题的关键;找中位数的时候一定要注意先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找到中间两位数的平均数.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
中位数
众数
八(1)班
85
85
八(2)班
85
80
甘肃省古浪县2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份甘肃省古浪县2024-2025学年九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省桃源县数学九上开学达标检测试题【含答案】: 这是一份2024-2025学年湖南省桃源县数学九上开学达标检测试题【含答案】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。