广西崇左市天等县2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,∠A=140°,则∠B的度数是( )
A.40°B.70°C.110°D.140°
2、(4分)已知△ABC的三边之长分别为a、1、3,则化简|9-2a|-的结果是( )
A.12-4aB.4a-12C.12D.-12
3、(4分)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有( )
A.1个B.1个C.3个D.4个
4、(4分)一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )
A.16(1+2x)=25 B.25(1-2x)=16 C.25(1-x)²=16 D.16(1+x)²=25
5、(4分)一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为( )
A.9环与8环B.8环与9环C.8环与8.5环D.8.5环与9环
6、(4分)已知一元二次方程,则它的一次项系数为( )
A.B.C.D.
7、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
A.①②③B.②③④C.①③④D.①②③④
8、(4分)如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BCB.∠ABC=90°C.AC⊥BDD.∠1=∠2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.
10、(4分)方程的解为_____.
11、(4分)如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
12、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________
13、(4分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).
15、(8分)在某校组织的初中数学应用能力竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级的一班和二班的成绩整理并绘制成如下的统计图,二班D级共有4人.
请你根据以上提供的信息解答下列问题:
(1)求此竞赛中一班共有多少人参加比赛,并补全条形统计图.
(2)扇形统计图中A级对应的圆心角度数是 .
(3)此次竞赛中二班在C级以上(包括C级)的人数为 .
(4)请你将表格补充完成:
16、(8分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
17、(10分)如图,E为正方形ABCD内一点,点F在CD边上,且∠BEF=90°,EF=2BE.点G为EF的中点,点H为DG的中点,连接EH并延长到点P,使得PH=EH,连接DP.
(1)依题意补全图形;
(2)求证:DP=BE;
(3)连接EC,CP,猜想线段EC和CP的数量关系并证明.
18、(10分)如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接
(1)菱形的边长是________;
(2)求直线的解析式;
(3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分别是边AB、CD的中点,那么EF=_____.
20、(4分)已知关于x的方程=1的解是负值,则a的取值范围是______.
21、(4分)已知m是关于x的方程的一个根,则=______.
22、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
23、(4分)一次函数y=2x+1的图象与x轴的交点坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
25、(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.
26、(12分)解方程:
(1)=2+;
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质可知AD∥BC,从而∠A+∠B=180°,即可求出答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∴∠B=180°-∠A=180°-140°=40°.
故选A.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
2、A
【解析】
二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
【详解】
解:由题意得 2<a<4,
∴9-2a>0,3-2a<0
=9-2a-(2a-3)
=9-2a-2a+3
=12-4a,
故选:A.
本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.
3、D
【解析】
①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;
②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;
③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;
④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.
【详解】
解:①四边形是矩形,
,
将沿折叠得到,
,,,
,
,
,
,
四边形是矩形,
,
四边形为正方形;故①正确;
②过作于,
点,点,
,,
,,
,
,
的面积为,故②正确;
③连接,
则,
即当时,取最小值,
,,
,
,
即的最小值为;故③正确;
④,
,
,
,
,,三点共线,
,
,
,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.
4、C
【解析】解:第一次降价后的价格为:15×(1﹣x),第二次降价后的价格为:15×(1﹣x)1.
∵两次降价后的价格为2元,∴15(1﹣x)1=2.故选C.
5、C
【解析】
根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.
【详解】
根据统计图可得:8出现了3次,出现的次数最多,则众数是8;
∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.
故选C.
本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.
6、D
【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.
【详解】
解:一元二次方程,则它的一次项系数为-2,
故选:D.
此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式为ax2+bx+c=0(a≠0).
7、D
【解析】
利用正方形的判定方法逐一分析判断得出答案即可.
【详解】
解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
②对角线互相垂直的矩形是正方形,故正确;
③对角线相等的菱形是正方形,故正确;
④对角线互相垂直平分且相等的四边形是正方形,故正确;
故选:D.
本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
8、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(3,1)
【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.
【详解】
由题意得点C(-3,1)的对应点C′的坐标是(3,1).
考点:关于y轴对称的点的坐标
本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.
10、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
11、
【解析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,
∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=AG=;
故答案为:.
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
12、m<
【解析】
∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,
∴(2m﹣1)<0,3﹣2m>0
∴解不等式得:m<,m<,
∴m的取值范围是m<.
故答案为m<.
13、
【解析】
试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。
∴在Rt△BOC中,根据勾股定理得,OB=。
∴OA=OB=。
∵点A在数轴上原点的左边,∴点A表示的数是。
三、解答题(本大题共5个小题,共48分)
14、4尺
【解析】
杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(9-x)尺.利用勾股定理解题即可.
【详解】
0.9丈=9尺
设杆子折断处离地面尺,则斜边为(9-)尺,
根据勾股定理得:,
解得:=4,
答:折断处离地面的高度是4尺.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
15、(1)25人,见解析;(2)158.4°;(3)21人;(4)见解析.
【解析】
(1)由二班D等级人数及其所占百分比可得总人数;
(2)用360°乘以对应的百分比可得;
(3)总人数乘以对应的百分比即可;
(4)根据众数、平均数和中位数的定义求解可得.
【详解】
解:(1)此竞赛中一班参赛的总人数为4÷16%=25(人),
C等级人数为25﹣(6+12+5)=2(人),
补全图形如下:
(2)扇形统计图中A级对应的圆心角度数是360°×44%=158.4°,
故答案为:158.4°;
(3)此次竞赛中二班在C级以上(包括C级)的人数为25×(1﹣16%)=21(人);
故答案为:21人;
(4)补全表格如下:
故答案为:90,87.6,80;
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、中位数与众数.
16、见解析.
【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
【详解】
解:如图所示.
连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
17、(1)详见解析;(2)详见解析;(3)详见解析
【解析】
(1)根据题意可以画出完整的图形;
(2)由EF=2BE,点G为EF的中点可知,要证明DP=BE,只要证明DP=EG即可,要证明DP=EG,只要证明ΔPDH≌ΔEGH即可,然后根据题目中的条件和全等三角形的判定即可证明结论成立;
(3)首先写出线段EC和CP的数量关系,然后利用全等三角形的判定和性质即可证明结论成立.
【详解】
解:(1)依题意补全图形如下:
(2)∵点H为线段DG的中点,
∴DH=GH.
在ΔPDH和ΔEGH中,
∵EH=PH,∠EHG=∠PHD,
∴ΔPDH≌ΔEGH(SAS).
∴DP=EG.
∵G为EF的中点,
∴EF=2EG.
∵EF=2EB,
∴BE=EG=DP.
(3)猜想:EC=CP.
由(2)可知ΔPDH≌ΔEGH.
∴∠HEG=∠HPD.
∴DP∥EF.
∴∠PDC=∠DFE.
又∵∠BEF=∠BCD=90°,
∴∠EBC+∠EFC=180°.
又∵∠DFE+∠EFC=180°,
∴∠EBC=∠DFE=∠PDC.
∵BC=DC,DP=BE,
∴ΔEBC≌ΔPDC(SAS).
∴EC=PC.
故答案为(1)详见解析;(2)详见解析;(3)详见解析.
本题考查全等三角形的判定与性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1)5;(2)y=-;(3)S=t-.
【解析】
(1)Rt△AOH中利用勾股定理即可求得菱形的边长;
(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
(3)根据S△ABC=S△AMB+SBMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
【详解】
(1)Rt△AOH中,
AO==5,所以菱形边长为5;
(2)∵四边形ABCO是菱形,
∴OC=OA=AB=5,即C(5,0).
设直线AC的解析式y=kx+b,函数图象过点A、C,得,解得
,
直线AC的解析式y=-;
(3)设M到直线BC的距离为h,
当x=0时,y=,即M(0,),HM=HO-OM=4-=,
由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
×5×4=×5×+×5h,解得h=,
①当0≤t<时,BP=BA-AP=5-2t,HM=OH-OM=,
s=BP•HM=×(5-2t)=-t+,
②当2.5<t≤5时,BP=2t-5,h=
S=BP•h=×(2t-5)=t-.
此题考查待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据梯形中位线定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的长.
【详解】
∵E,F分别是边AB,CD的中点,
∴EF为梯形ABCD的中位线,
∴EF=(AD+BC)=(4+10)=1.
故答案为1.
本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
20、a<-2且a≠-4
【解析】
表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.
【详解】
解:方程=1,
去分母得:2x-a=x+2,
解得:x=a+2,
由分式方程的解为负值,得到a+2<0,且a+2≠-2,
解得:a<-2且a≠-4,
故答案为:a<-2且a≠-4
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.
21、1.
【解析】
试题分析:∵m是关于x的方程的一个根,∴,∴,∴=1,故答案为1.
考点:一元二次方程的解;条件求值.
22、 (-2,2)
【解析】
由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
【详解】
解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
∴A′的坐标为(-2,2).
故答案为:(-2,2).
本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
23、(-,0)
【解析】
令y=0可求得x的值,则可求得与x轴的交点坐标.
【详解】
解:令y=0,即2x+1=0,
解得:x=-,
∴一次函数y=2x+1的图象与x轴的交点坐标为(-,0).
故答案为:(-,0).
本题考查了一次函数与x轴的交点坐标.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.
【解析】
(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.
【详解】
(1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:
由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC===5,
△ACE的面积=AE×EC=×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=AB•AC=×12×5=30,
∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;
故答案为1.
本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.
25、
【解析】
连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.
【详解】
解:连接,作于,如图所示:
则,点为的中点,,
,
,,
,,
,是直角三角形,
,,
,,,
,
在中,由勾股定理得:;
【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.
26、(1)x=0;(1)x=1.
【解析】
(1)两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可;
(1)两边同时乘以3(x-3),化为整式方程,解整式方程后进行验根即可得.
【详解】
(1)两边同时乘以x-1,得:
3x﹣5=1(x﹣1)﹣x﹣1,
解得:x=0,
检验:当x=0时,x-1≠0,
所以x=0是分式方程的解;
(1)两边同时乘以3(x-3),得
1x﹣1=11x﹣11+x﹣3,
解得:x=1,
检验:当x=1时,3(x-3)≠0,
所以x=1是分式方程的解.
本题考查了解分式方程,熟练掌握解分式方程的一般方法以及注意事项是解题的关键.解分式方程要进行验根.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
中位数
众数
一班
87.5
90
90
二班
87.6
80
100
2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】: 这是一份2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西崇左市江州区九年级数学第一学期开学统考试题【含答案】: 这是一份2024-2025学年广西崇左市江州区九年级数学第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。