贵州省贵阳市名校2024-2025学年九上数学开学检测试题【含答案】
展开这是一份贵州省贵阳市名校2024-2025学年九上数学开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
A.15尺B.16尺C.17尺D.18尺
2、(4分)如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
A.1个;B.2个;
C.3个;D.4个.
3、(4分)多项式x2﹣1与多项式x2﹣2x+1的公因式是( )
A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2
4、(4分)若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )
A.12B.10C.8或10D.6
5、(4分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是( )
A.2B.4C.D.
6、(4分)能判定四边形ABCD是平行四边形的是( )
A.AD//BC,AB=CDB.∠A=∠B,∠C=∠D
C.∠A=∠C,∠B=∠DD.AB=AD,CB=CD
7、(4分)化简的结果为( )
A.﹣B.﹣yC.D.
8、(4分)已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是( )
A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n<2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.
10、(4分)分解因式:=_________________________.
11、(4分)如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.
12、(4分)若菱形的周长为14 cm,一个内角为60°,则菱形的面积为_____cm1.
13、(4分)如图,在平行四边形ABCD中,连接AC,按以下步骤作图:分别以点A,C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M,N,作直线MN交CD于点E,交AB于点F.若AB=5,BC=3,则△ADE的周长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由
15、(8分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
16、(8分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):
(1)求这5天的用电量的平均数;
(2)求这5天用电量的众数、中位数;
(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.
17、(10分)解方程
(1)
(2)
18、(10分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
(2)求在平移过程中线段AB扫过的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
20、(4分) “绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程___.
21、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
22、(4分)若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.
23、(4分)将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
(1)表中的a=______,b=______,c=______;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.
25、(10分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.
(1)请在图中作等腰△ABC,使其底边AC=2,且点C为格点;
(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.
26、(12分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【详解】
解:依题意画出图形,
设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,
因为B'E=16尺,所以B'C=8尺
在Rt△AB'C中,82+(x-2)2=x2,
解之得:x=17,
即芦苇长17尺.
故选C.
本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.
2、C
【解析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【详解】
解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;
②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.
∵C△ABO=C△CBO,∴AB=BC.
根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;
③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.
∵∠DAO=∠CBO,∴∠ADO=∠DAO.
∴AO=OD.
∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④∵∠DAO=∠BAO,BO=DO,
∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,
∴新四边形是矩形.符合条件.
所以①②④符合条件.
故选:C.
本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.
3、A
【解析】
x2-1=(x+1)(x-1),
x2-2x+1=(x-1)2,
所以公因式是:x-1,
故选A.
本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.
4、B
【解析】
根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.
【详解】
由题意得:m-2=0,n-4=0,∴m=2,n=4,
又∵m、n恰好是等腰△ABC的两条边的边长,
①若腰为2,底为4,此时不能构成三角形,舍去,
②若腰为4,底为2,则周长为:4+4+2=10,
故选B.
本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.
5、B
【解析】
解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.
∵∠AOD=60°,
∴△OAB是等边三角形.∴OA=AD=1.
∴AC=1OA=1×1=2.
故选B.
6、C
【解析】
根据平行四边形的判定定理依次确定即可.
【详解】
A. AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
B. ∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;
C. ∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;
D. AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
故选:C.
此题考查平行四边形的判定定理,熟记定理内容即可正确解答.
7、D
【解析】
先因式分解,再约分即可得.
【详解】
故选D.
本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
8、C
【解析】
根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.
【详解】
解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限
∴m+1>0,n-2<0
∴m>-1,n<2,
故选:C.
本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3或
【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
【详解】
分两种情况:①当∠EFC=90°,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=4,
∴BC=AD=4,
在Rt△ABC中,AC=
设BE=x,则CE=BC-BE=4-x,
由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4-x)2,
解得x=;
②当∠CEF=90°,如图2
由翻折的性质可知∠AEB=∠AEF=45°,
∴四边形ABEF是正方形,
∴BE=AB=3,
故BE的长为3或
此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.
10、.
【解析】
试题分析:==.
故答案为.
考点:提公因式法与公式法的综合运用.
11、b>c>a.
【解析】
由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;
由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;
由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.
【详解】
解:第一次折叠如图1,折痕为DE,
由折叠得:AE=EC=AC=×4=2,DE⊥AC
∵∠ACB=90°
∴DE∥BC
∴a=DE=BC=×3=,
第二次折叠如图2,折痕为MN,
由折叠得:BN=NC=BC=×3=,MN⊥BC
∵∠ACB=90°
∴MN∥AC
∴b=MN=AC=×4=2,
第三次折叠如图3,折痕为GH,
由勾股定理得:AB==5
由折叠得:AG=BG=AB=,GH⊥AB
∴∠AGH=90°
∵∠A=∠A,∠AGH=∠ACB,
∴△ACB∽△AGH
∴,即,
∴GH=,即c=,
∵2>>,
∴b>c>a,
故答案为:b>c>a.
本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.
12、18
【解析】
根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积
【详解】
解:菱形的周长为14 cm,则边长为6cm,可求得60°所对的高为×6=3cm,则菱形的面积为6×3=18cm1.
故答案为18.
此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理
13、8
【解析】
解:由做法可知MN是AC的垂直平分线,
∴AE=CE.
∵四边形ABCD是平行四边形
∴CD=AB=5,AD=BC=3.
∴AD+DE+AE=AD+DE+CE=AD+CD=5+3=8,
∴△ADE的周长为8.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)是菱形;
【解析】
根据菱形判定定理:对角线互相垂直且平分的四边形是菱形
【详解】
(1) 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠EAO=∠FCO,
∵O是OA的中点,
∴OA=OC,
在△AOE和△COF中,∠EAO=∠FCO OA=OC ∠AOE=∠COF ,
∴△AOE≌△COF(ASA);
(2) EF⊥AC时,四边形AFCE是菱形;
由(1)中△AOE≌△COF,得
AE=CF,OE=OF,
又∵OA=OC,EF⊥AC
∴四边形AFCE是菱形.
此题主要考查全等三角形的判定和菱形判定定理,熟练能掌握即可轻松解题.
15、(1)(﹣,3)(2) (3)(,)或(﹣,5)或(,﹣)
【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.
(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;
(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.
【详解】
(1)x2﹣9x+18=0,
(x﹣3)(x﹣6)=0,
x=3或6,
∵CD>DE,
∴CD=6,DE=3,
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC==3,
∴∠DCA=30°,∠EDC=60°,
Rt△DEM中,∠DEM=30°,
∴DM=DE=,
∵OM⊥AB,
∴S菱形ABCD=AC•BD=CD•OM,
∴=6OM,OM=3,
∴D(﹣,3);
(2)∵OB=DM=,CM=6﹣=,
∴B(,0),C(,3),
∵H是BC的中点,
∴H(3,),
∴k=3×=;
故答案为;
(3)
①∵DC=BC,∠DCB=60°,
∴△DCB是等边三角形,
∵H是BC的中点,
∴DH⊥BC,
∴当Q与B重合时,如图1,四边形CFQP是平行四边形,
∵FC=FB,
∴∠FCB=∠FBC=30°,
∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,
∴AB⊥BF,CP⊥AB,
Rt△ABF中,∠FAB=30°,AB=6,
∴FB=2=CP,
∴P(,);
②
如图2,∵四边形QPFC是平行四边形,
∴CQ∥PH,
由①知:PH⊥BC,
∴CQ⊥BC,
Rt△QBC中,BC=6,∠QBC=60°,
∴∠BQC=30°,
∴CQ=6,
连接QA,
∵AE=EC,QE⊥AC,
∴QA=QC=6,
∴∠QAC=∠QCA=60°,∠CAB=30°,
∴∠QAB=90°,
∴Q(﹣,6),
由①知:F(,2),
由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);
③
如图3,四边形CQFP是平行四边形,
同理知:Q(﹣,6),F(,2),C(,3),
∴P(,﹣);
综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).
本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.
16、(1)1.6度;(2)1度;1度;(3)2.2度.
【解析】
(1)用加权平均数的计算方法计算平均用电量即可;
(2)分别利用众数、中位数及极差的定义求解即可;
(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.
【详解】
(1)平均用电量为:(1×3+10×1+11×1)÷5=1.6度;
(2)1度出现了3次,最多,故众数为1度;
第3天的用电量是1度,故中位数为1度;
(3)总用电量为22×1.6×36=2.2度.
17、(1);(2)无解
【解析】
(1)将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2) 将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:(1)
方程两边同乘,得
解得:
经检验:是原方程的解
所以原分式方程的解为
(2)
方程两边同乘,得
解得:
当时,
∴是原方程的增根
所以原分式方程无解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
18、(1)图见解析,;(2)25
【解析】
(1)由题意直接根据图形平移的性质画出△A′B′C′,并写出各点坐标即可;
(2)由题意可知AB扫过的部分是平行四边形,根据平行四边形的面积公式即可得出结论.
【详解】
解:(1)平移后的△A′B′C′如图所示,
观察图象可知点A′、B′、C′的坐标分别为:.
(2)由图象以及平移的性质可知线段AB扫过部分形状为平行四边形,且底为5,高为5,
故线段AB扫过的面积为:.
本题考查的是作图-平移变换,熟练掌握图形平移不变性的性质是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
20、69.05%(1+x)2=72.75%
【解析】
此题根据从2019年起每年的森林覆盖率年平均增长率为x,分别列出2020年以及2021年得森林覆盖面积,即可得出方程.
【详解】
∵设从2019年起每年的森林覆盖率年平均增长率为x,
∴根据题意得:2020年覆盖率为:69.05% (1+x),
2021年为:69.05% (1+x)²=72.75%,
故答案为:69.05% (1+x)²=72.75%
此题考查一元二次方程的应用,解题关键在于列出方程
21、
【解析】
首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
【详解】
∵菱形ABCD中,AB=AM,
∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
∴∠ABC+∠BAD=180°,
∴∠BAD=180°-
∵AB=AM,
∴∠AMB=∠ABC=
∴∠BAM=180°-∠ABC-∠AMB=180°-2
连接BN、AN,如图:
∵点B关于直线AM对称的点是N,
∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
∴∠AND=∠AND==180°-
∵M是BC边上的点(不与B,C两点重合),
∴
∴
若,即时,
∠CDN=∠ADC-∠AND=,即;
若即时,
∠CDN=∠AND-∠ADC =,即
∴关于的函数解析式是
故答案为:.
此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
22、a>1且a≠3
【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.
【详解】
解:去分母得:3x﹣a=x﹣1,
解得:x= ,
由分式方程的解为正数,得到>0,≠1,
解得:a>1且a≠3,
故答案为:a>1且a≠3
本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.
23、
【解析】
根据“左加右减”的法则求解即可.
【详解】
解:将正比例函数的图象向右平移2个单位,
得=,
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)14;0.08;4;(2)详见解析;(3)80.
【解析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;
(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
【详解】
解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;
故答案为:14;0.08;4;
(2)频数分布直方图、折线图如图,
(3)根据题意得:1000×(4÷50)=80(人),
则你估计该校进入决赛的学生大约有80人.
此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
25、 (1)见解析;(2)画图见解析;其面积为8.
【解析】
(1) 根据每个正方形的边长为1,利用勾股定理确定C点的位置(使AC=2),再连接AB,AC即可.
(2)根据平行四边形的性质确定点D连接BD,CD即可得到所求四边形;再根据平行四边形面积公式即可求出.
【详解】
(1)如图,△ABC即为所求.
(2)如图,平行四边形ABDC即为所求,其面积为8.
本题考查了等腰三角形的性质以及平行四边形的性质,熟练掌握性质定理是解题的关键.
26、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
题号
一
二
三
四
五
总分
得分
批阅人
度数
9
10
11
天数
3
1
1
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
a
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
c
b
合计
50
1.00
相关试卷
这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省临汾市名校数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省商丘市名校九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。