年终活动
搜索
    上传资料 赚现金

    贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】

    贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第1页
    贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第2页
    贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份贵州省黔东南苗族侗族自治州2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是( ).
    A.1B.1.5C.3D.5
    2、(4分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是( )
    A.B.C.D.
    3、(4分)数据2,3,5,5,4的众数是( ).
    A.2B.3C.4D.5
    4、(4分)下列实数中,无理数是( )
    A.B.C.D.
    5、(4分)下列图形中是中心对称图形但不是轴对称图形的是( )
    A.B.C.D.
    6、(4分)下列命题中,错误的是( )
    A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形
    B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
    C.三角形的中线将三角形分成面积相等的两部分
    D.一组对边平行另一组对边相等的四边形是平行四边形
    7、(4分)若关于x的一元一次不等式组有解,则m的取值范围为
    A.B.C.D.
    8、(4分)如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )

    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
    10、(4分)已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.
    11、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
    12、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.
    13、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
    请你根据以上统计图中的信息,解答下列问题:
    (1)该班有学生多少人?
    (2)补全条形统计图;
    (3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
    15、(8分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?
    16、(8分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:
    (1)线段AF与CF的数量关系是 .
    (2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.
    17、(10分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为(分),所走的路程为(米),与之间的函数关系如图所示,
    (1)小明中途休息用了_______分钟.
    (2)小明在上述过程中所走的过程为________米
    (3)小明休息前爬山的平均速度和休息后爬山的平均速度各是多少?
    18、(10分)(1)计算:. (2)解方程:(x+2)2=1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
    20、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
    ①y的值随x的值的增大而增大;
    ②b>0;
    ③关于x的方程的解为.
    其中说法正确的有______只写序号
    21、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
    22、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
    23、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)綦江区某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下:
    乙队:
    分析数据:两组样本数据的平均数、中位数、众数、方差如下表所示:
    整理、描述数据:
    (1)表中a=______,b=______,c=______;
    (2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.
    25、(10分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.
    (1)甲的速度是多少;
    (2)求a的值,并说明A点坐标的实际意义;
    (3)当时,求y与t的函数关系式.
    26、(12分)平面直角坐标系中,O为坐标原点,点A(3,4),点B(6,0).
    (1)如图①,求AB的长;
    (2)如图2,把图①中的△ABO绕点B顺时针旋转,使O的对应点M恰好落在OA的延长线上,N是点A旋转后的对应点;
    ①求证:四边形AOBN是平行四边形;
    ②求点N的坐标.
    (3)点C是OB的中点,点D为线段OA上的动点,在△ABO绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围.(直接写出结果)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.
    故选B.
    2、B
    【解析】
    分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.
    详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
    故选B.
    点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.
    3、D
    【解析】
    由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
    【详解】
    解:∵1是这组数据中出现次数最多的数据,
    ∴这组数据的众数为1.
    故选:D.
    本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
    4、D
    【解析】
    根据无理数、有理数的定义即可判定选择项.
    【详解】
    解:A、是分数,属于有理数,本选项不符合题意;
    B、是有限小数,属于有理数,本选项不符合题意;
    C、是整数,属于有理数,本选项不符合题意;
    D、=是无理数,本选项不符合题意;
    故选:D.
    此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    5、C
    【解析】
    A. 不是轴对称图形,不是中心对称图形,不符合题意;
    B. 是轴对称图形,不是中心对称图形,不符合题意;
    C. 不是轴对称图形,是中心对称图形,符合题意;
    D. 是轴对称图形,是中心对称图形,不符合题意.
    故选C.
    6、D
    【解析】
    根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.
    【详解】
    解:A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形,所以A选项为真命题;
    B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;
    C.三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;
    D.一组对边平行且相等的四边形是平行四边形,所以D选项为假命题.
    故选D.
    本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
    7、C
    【解析】
    求出两个不等式的解集,再根据有解列出不等式组求解即可:
    【详解】
    解,
    ∵不等式组有解,∴2m>2﹣m.
    ∴ .故选C.
    8、C
    【解析】
    把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
    【详解】
    解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
    在Rt△ACB′,
    所以它爬行的最短路程为13cm.
    故选:C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
    【详解】
    解:由折叠可得,EF=AE,BF=AB.
    ∵△FDE的周长为8,△FCB的周长为22,
    ∴DF+AD=8,FC+CB+AB=22,
    ∴平行四边形ABCD的周长=8+22=30,
    ∴AB+BC=BF+BC=15,
    又∵△FCB的周长=FC+CB+BF=22,
    ∴CF=22-15=1,
    故答案为:1.
    本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
    10、
    【解析】
    把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.
    【详解】
    解:把(1,a)代入y=2x得a=2,
    所以方程组的解为.
    故答案为:.
    本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
    11、0.1
    【解析】
    概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
    【详解】
    解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
    ∴这种苹果幼树移植成活率的概率约为0.1,
    故答案为:0.1.
    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    12、1或
    【解析】
    因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.
    【详解】
    解:①当12为斜边时,则第三边==;
    ②当12是直角边时,第三边==1.
    故答案为:1或.
    本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.
    13、13
    【解析】
    试题解析:
    故答案为
    点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
    (2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
    (3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
    【解析】
    (1)根据捐2本的人数是15人,占30%,即可求得总人数;
    (2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
    (3)根据中位数和众数的定义解答
    15、2
    【解析】
    设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.
    【详解】
    解:设B车行驶x小时,则A行驶(1+20%)x小时.
    由题意得
    解得:x=2
    经检验:x=2是原方程的解.
    B车的行驶的时间为2小时.
    此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
    16、(1)FA=FC;(2)
    【解析】
    (1)根据基本作图和线段垂直平分线的性质进行判断;
    (2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.
    【详解】
    解:(1)由作法得EF垂直平分AC,
    所以FA=FC.
    故答案为FA=FC;
    (2)∵AE平分∠BAD,
    ∴∠BAE=∠DAE=∠BAD=60°,
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠AEB=∠DAE=60°,
    ∴△ABE为等边三角形,
    ∴AE=AB=8,∠B=60°,
    ∵EA=EC,
    ∴∠EAC=∠ECA=∠AEB=30°,
    ∴AC=AB=8,
    ∵∠CAD=60°-30°=30°,
    即OA平分∠EAF,
    ∴AF=AE=8,
    ∴△AEF为等边三角形,
    ∴EF=8,
    ∴四边形AECF的面积=.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    17、(1)20;(2)3800;(3)小明休息前爬山的平均速度是70米/分,休息后爬山的平均速度是25米/分.
    【解析】
    (1)从图像来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟;
    (2)根据图像可得小明所走的路程为3800米;
    (3)根据图像信息,即可求得小明休息前和休息后爬山的平均速度.
    【详解】
    (1)根据图像信息,可得
    小明在第40分钟时开始休息,第60分钟时结束休息,故中途休息用了20分钟;
    (2)根据图像,得
    小明所走的路程为3800米;
    (3)根据图像,得
    小明休息前爬山的平均速度是米/分,
    小明休息后爬山的平均速度是米/分.
    此题主要考查一次函数的实际应用,熟练掌握,即可解题.
    18、 (1) (2)x1=1,x2=-2
    【解析】
    (1)本题是二次根式的混合运算,先算除法,然后把根式化成最简根式,合并同类根式即可.
    (2)先两边同时开方,再分别求出x1和x2的值,即是方程的根.
    【详解】
    (1)解:原式


    (2)x+2=±3,
    ∴x1=1,x2=-2.
    本题考查了二次根式的运算及解一元二次方程,熟练掌握二次根式的化简及开方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
    【详解】
    解:设一次函数的解析式为:,

    解得:
    所以这个一次函数的解析式为:
    故答案为:
    本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
    20、.
    【解析】
    一次函数及其应用:用函数的观点看方程(组)或不等式.
    【详解】
    由图象得:
    ①的值随的值的增大而增大;
    ②;
    ③关于的方程的解为.
    故答案为:①②③.
    本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
    21、
    【解析】
    根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
    故答案为:.
    本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
    22、1
    【解析】
    先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
    【详解】
    ∵在△ABC中,∠B=90°,AB=3,AC=5,
    ∵△ADE是△CDE翻折而成,
    ∴AE=CE,
    ∴AE+BE=BC=4,
    ∴△ABE的周长=AB+BC=3+4=1.
    故答案为:1.
    本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    23、1或3
    【解析】
    数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
    【详解】
    解:连接AC和BD交于一点O,
    四边形ABCD为菱形
    垂直平分AC,



    点P在线段AC的垂直平分线上,即BD上
    在直角三角形APO中,由勾股定理得


    如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
    如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
    故答案为:1或3
    本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);;;(2)选甲队好
    【解析】
    (1)根据中位数定义,众数的的定义方差的计算公式代值计算即可;
    (2)根据方差的意义即可得出答案.
    【详解】
    解:(1)根据图象可知道乙队一个10人,中位数在第五六位之间,故为;
    估计表中数据178出现了4次,出现的次数最多,所以;根据方差公式即可计算出
    故答案为:;;.
    (2)选甲队好.
    ∵甲队的方差为0.6,乙队的方差为1.8.
    ∴甲队的方差小于乙队的方差.
    ∴甲队的身高比乙队整齐. .
    ∴选甲队比较好.
    此题考查方差,加权平均数,中位数,众数,解题关键在于看懂图中数据
    25、(1)甲的速度为;(2),A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;(3)当时,
    【解析】
    1根据图象中的数据和题意可以求得甲的速度;
    2根据甲的速度可以求得乙的速度,再根据图象和题意即可求得点A的坐标和写出点A表示的实际意义;
    3根据题意可以求得当t大于a时对应的函数解析式.
    【详解】
    (1)由题意可得,
    甲的速度为:,
    故答案为4;
    (2)由1知,乙的速度为8 ,
    依题意,可得
    解得,,
    点A的坐标为:,
    A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;
    (3)由题意知,
    当时,甲乙两人之间的距离是
    即直线上另一点的坐标为,
    当时,设y与t的函数关系式为:,
    直线过点,,

    解得:,
    当时,
    考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    26、(1)AB的长是2;(2)①见解析;②点N坐标为(1,4);(3)线段CP长的取值范围为≤CP≤1.
    【解析】
    (1)根据平面直角坐标系中任意两点的距离公式计算即可;
    (2)①根据平面直角坐标系中任意两点的距离公式计算出OA,从而得出OA=AB,然后根据等边对等角可得∠AOB=∠ABO,根据旋转的性质可得BM=BO,BN=BA,∠MBN=∠ABO=∠AOB,然后证出AO∥BN且AO=BN即可证出结论;
    ②证出AN∥x轴,再结合平行四边形的边长和点A的坐标即可得出结论;
    (3)连接BP,根据题意,先根据三角形的三边关系可得当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长,然后求出BP的最小值和最大值即可求出CP的最值,从而得出结论.
    【详解】
    (1)∵点A(3,4),点B(6,0)
    ∴AB==2
    ∴AB的长是2.
    (2)①证明:∵OA==2
    ∴OA=AB
    ∴∠AOB=∠ABO
    ∵△ABO绕点B顺时针旋转得△NBM
    ∴BM=BO,BN=BA,∠MBN=∠ABO=∠AOB
    ∴∠OMB=∠AOB,OA=BN
    ∴∠OMB=∠MBN
    ∴AO∥BN且AO=BN
    ∴四边形AOBN是平行四边形
    ②如图1,连接AN
    ∵四边形AOBN是平行四边形
    ∴AN∥OB即AN∥x轴,AN=OB=6
    ∴xN=xA+6=3+6=1,yN=yA=4
    ∴点N坐标为(1,4)
    (3)连接BP
    ∵点D为线段OA上的动点,OA的对应边为MN
    ∴点P为线段MN上的动点
    ∴点P的运动轨迹是以B为圆心,BP长为半径的圆
    ∵C在OB上,且CB=OB=3
    ∴当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长
    如图2,当BP⊥MN时,BP最短
    ∵S△NBM=S△ABO,MN=OA=2
    ∴MN•BP=OB•yA
    ∴BP=
    ∴CP最小值=-3=
    当点P与M重合时,BP最大,BP=BM=OB=6
    ∴CP最大值=6+3=1
    ∴线段CP长的取值范围为≤CP≤1.
    此题考查的是求平面直角坐标系中任意两点的距离、平行四边形的判定及性质、旋转的性质和线段的最值问题,掌握平面直角坐标系中任意两点的距离公式、平行四边形的判定及性质、旋转的性质和三角形的三边关系是解决此题的关键.
    题号





    总分
    得分
    甲队
    178
    177
    179
    179
    178
    178
    177
    178
    177
    179
    平均数
    中位数
    众数
    方差
    甲队
    178
    178
    b
    0.6
    乙队
    178
    a
    178
    c

    相关试卷

    2025届重庆江南新区联盟九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2025届重庆江南新区联盟九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届云南昆明市数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2025届云南昆明市数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省黔三州九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2025届贵州省黔三州九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,九月份共生产零件万个,设八,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map