搜索
    上传资料 赚现金
    英语朗读宝

    海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】

    海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】第1页
    海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】第2页
    海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
    A.1个B.2个C.3个D.4个
    2、(4分)甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是( ).
    A.甲B.乙C.甲和乙一样D.无法确定
    3、(4分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是( )
    A.k=0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1
    4、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )
    A.8B.7C.4D.3
    5、(4分)已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是( )
    A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n<2
    6、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有( )
    A.2条B.4条C.5条D.6条
    7、(4分)函数y=mx+n与y=nx的大致图象是( )
    A.B.
    C.D.
    8、(4分)设表示两个数中的最大值,例如:,,则关于的函数可表示为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.
    10、(4分)抛物线与轴的公共点是,则这条抛物线的对称轴是__________.
    11、(4分)如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.
    12、(4分)一次函数的图像在轴上的截距是__________.
    13、(4分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
    15、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3),B(﹣3,1),C(﹣1,3).
    (1)请按下列要求画图:
    ①平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1;
    ②△A1B1C1与△ABC关于原点O中心对称,画出△A1B1C1.
    (1)若将△A1B1C1绕点M旋转可得到△A1B1C1,请直接写出旋转中心M点的坐标 .
    16、(8分)如图,中,且是的中点
    (1)求证:四边形是平行四边形。
    (2)求证:四边形是菱形。
    (3)如果时,求四边形ADBE的面积
    (4)当 度时,四边形是正方形(不证明)
    17、(10分)(1) ;
    (2).
    18、(10分)如图,四边形ABCD中,AB=AD,CB=CD,AB ∥ CD.
    (1)求证:四边形ABCD是菱形.
    (2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).
    (3)对角线AC和BD交于点O,∠ ADC =120°,AC=8, P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为 m1.
    20、(4分)如果有意义,那么x的取值范围是_____.
    21、(4分)若直线经过点和点,则的值是_____.
    22、(4分)已知y=1++,则2x+3y的平方根为______.
    23、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
    (1)请写出甲的骑行速度为 米/分,点M的坐标为 ;
    (2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);
    (3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.
    25、(10分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
    26、(12分)先化简,再求值:,且x为满足﹣3<x<2的整数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
    【详解】
    如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
    实验求出二次函数与x轴的另一个交点为(-2,0)
    故可补全图像如下,
    由图可知a<0,c>0,对称轴x=1,故b>0,
    ∴,①错误,
    ②对称轴x=1,故x=-,∴,正确;
    ③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
    故选D
    此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
    2、A
    【解析】
    根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,
    ∴S甲2<S乙2,
    ∴成绩比较稳定的是甲;
    故选A.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    3、B
    【解析】
    讨论: ①当k=0时,方程化为一次方程, 方程有一个实数解; 当k≠0时,方程为二次方程 ,Δ≥0,然后求出两个中情况下的的公共部分即可.
    【详解】
    解:①当k=0时,方程化为-3x-=0,解得x=;
    当k≠0时,Δ=≥0,解得
    k≥-1,所以k的范围为k≥-1.
    故选B.
    本题主要考查一元二次方程根的判别式,注意讨论k的取值.
    4、A
    【解析】
    根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴OA=OC=3,OB=OD,AC⊥BD,
    在Rt△AOB中,∠AOB=90°,
    根据勾股定理,得:OB===4,
    ∴BD=2OB=8,
    故选A.
    本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.
    5、C
    【解析】
    根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.
    【详解】
    解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限
    ∴m+1>0,n-2<0
    ∴m>-1,n<2,
    故选:C.
    本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.
    6、D
    【解析】
    根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,再证得△ABO是等边三角形,推出AB=AO=8=DC,由此即可解答.
    【详解】
    ∵AC=16,四边形ABCD是矩形,
    ∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,
    ∴BO=OD=AO=OC=8,
    ∵∠AOD=120°,
    ∴∠AOB=60°,
    ∴△ABO是等边三角形,
    ∴AB=AO=8,
    ∴DC=8,
    即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,
    故选D.
    本题考查了矩形性质和等边三角形的性质和判定的应用,矩形的对角线互相平分且相等,矩形的对边相等.
    7、D
    【解析】
    当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;
    当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;
    当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;
    当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.
    综上,A,B,C错误,D正确
    故选D.
    考点:一次函数的图象
    8、D
    【解析】
    由于3x与的大小不能确定,故应分两种情况进行讨论.
    【详解】
    当,即时,;
    当,即时,.
    故选D.
    【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①③④
    【解析】
    (1)∵抛物线开口向下,
    ∴,
    又∵对称轴在轴的右侧,
    ∴ ,
    ∵抛物线与轴交于正半轴,
    ∴ ,
    ∴,即①正确;
    (2)∵抛物线与轴有两个交点,
    ∴,
    又∵,
    ∴,即②错误;
    (3)∵点C的坐标为,且OA=OC,
    ∴点A的坐标为,
    把点A的坐标代入解析式得:,
    ∵,
    ∴,即③正确;
    (4)设点A、B的坐标分别为,则OA=,OB=,
    ∵抛物线与轴交于A、B两点,
    ∴是方程的两根,
    ∴,
    ∴OA·OB=.即④正确;
    综上所述,正确的结论是:①③④.
    10、
    【解析】
    根据二次函数的抛物线的对称性,可得二次函数与x轴的交点是关于抛物线的对称轴对称的,已知两个交点的坐标,求出中点,即可求出对称轴.
    【详解】
    解:根据抛物线的对称性可得:的中心坐标为(1,0)因此可得抛物线的对称轴为
    故答案为
    本题主要考查抛物线的对称性,关键在于求出抛物线与x轴的交点坐标的中点.
    11、.
    【解析】
    先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.
    【详解】
    在中,,,
    ,是的外角,

    同理可得 .
    故答案为:.
    本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.
    12、1
    【解析】
    求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
    【详解】
    解:令x=0,得y=1;
    故答案为:1.
    本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
    13、(-2,-2)
    【解析】
    先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
    【详解】
    “卒”的坐标为(﹣2,﹣2),
    故答案是:(﹣2,﹣2).
    考查了坐标确定位置,关键是正确确定原点位置.
    三、解答题(本大题共5个小题,共48分)
    14、(1)每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)此时应购进电冰箱33台,则购进空调67台.
    【解析】
    试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.
    解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元
    依题意得,,
    解得:m=2000,
    经检验,m=2000是原分式方程的解,
    ∴m=2000;
    ∴每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,
    根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,
    ∵﹣50<0,
    ∴W随x的增大而减小,
    ∵33≤x≤40,
    ∴当x=33时,W有最大值,
    即此时应购进电冰箱33台,则购进空调67台.
    15、(1)①见解析②见解析(1)(0,﹣3)
    【解析】
    (1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
    ②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可;
    (1)连接B1B1,C1C1,交点就是旋转中心M.
    【详解】
    (1)①如图所示,△A1B1C1即为所求;
    ②如图所示,△A1B1C1即为所求;
    (1)如图,连接C1C1,B1B1,交于点M,则△A1B1C1绕点M旋转180°可得到△A1B1C1,
    ∴旋转中心M点的坐标为(0,﹣3),
    故答案为(0,﹣3).
    本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    16、(1)见解析;(2)见解析;(3)24;(4)45.
    【解析】
    (1)推出CE=BD,CE∥BD,可证四边形是平行四边形;
    (2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可;
    (3)由四边形BDEC是平行四边形,可得DE=BC=6,然后根据菱形的面积公式求解即可;
    (4)当45度时,可证△ABC是等腰直角三角形,从而AB=BC=DE,可证四边形是正方形.
    【详解】
    (1)证明:∵E是AC的中点,
    ∴CE=AE=AC,
    ∵DB=AC,
    ∵BD=CE,
    ∵BD∥AC,
    ∴BD∥CE,
    ∴四边形BDEC是平行四边形,
    ∴DE∥BC.
    (2)证明:∵DE∥BC,∠ABC=90°,
    ∴DE⊥AB,
    ∵AE=AC,DB=AC,BD∥AC,
    ∴BD=AE,BD∥AE,
    ∴四边形ADBE是平行四边形,
    ∴平行四边形ADBE是菱形;
    (3)∵四边形BDEC是平行四边形,
    ∴DE=BC=6.
    ∵四边形ADBE是菱形,
    ∴四边形ADBE面积=;
    (4)当45度时,四边形是正方形.
    ∵45,
    ∴△ABC是等腰直角三角形,
    ∴AB=BC=DE,
    ∵四边形ADBE是菱形,
    ∴四边形是正方形.
    本题考查了平行四边形的性质和判定,菱形的判定与性质,以及正方形的判定等知识点,注意:有一组对边平行且相等的四边形是平行四边形,对角线互相垂直的平行四边形是菱形,有一个角是直角的菱形是正方形.
    17、(1);(2).
    【解析】
    (1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;
    (2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.
    【详解】
    解:(1)原式=
    (2)原式=
    本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.
    18、 (1)见解析;(2)见解析;(3) .
    【解析】
    分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.
    (2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.
    (3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.
    详解:证明:(1) AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,
    ∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,
    ∴AD∥BC,∴四边形ABCD是平行四边形.
    又∵AB=AD,∴四边形ABCD是菱形.
    (2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,
    ∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;
    (3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.
    连接AE,
    ∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,
    ∴AC=CE=AE=8,过点A作于点F,
    ∴.当点P1在点F时,线段AP1最短,此时;.
    当点P1在点E时,线段AP1最长,此时AP1=8,
    ..
    点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2.
    【解析】
    试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.
    由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,
    所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,
    又知该矩形的面积为:10×30=600m1,
    所以,耕地的面积为:600-49=2m1.
    故答案为2.
    考点:矩形的性质.
    20、x>1
    【解析】
    根据二次根式有意义的条件可得 >1,再根据分式分母≠1可得x>1.
    【详解】
    由题意得:x>1,
    故答案为:x>1
    此题考查二次根式有意义的条件,掌握其定义是解题关键
    21、4
    【解析】
    分别把和代入中即可求出k和b的值,从而可以得出k-b的值.
    【详解】
    解:∵直线经过点和点,
    ∴将代入中得-2=k-3,解得k=1,
    将代入中得b=-3,
    ∴k-b=1-(-3)=4,
    故答案为4.
    本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.
    22、±2
    【解析】
    先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
    【详解】
    解:由题意得,,



    的平方根为.
    故答案为.
    本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
    23、40°
    【解析】
    根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.
    【详解】
    ∵四边形是平行四边形,
    ∴∠A=∠C=70°,
    ∵DC=DB,
    ∴∠C=∠DBC=70°,
    ∴∠CDB=180°-70°-70°=40°.
    故答案是:40°.
    考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.
    二、解答题(本大题共3个小题,共30分)
    24、(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C地的路程相等.
    【解析】
    (1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程时间=速度就可以求出结论;
    (2)先由行程问题的数量关系求出M、N的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;
    (3) 设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.
    【详解】
    (1)由题意得:甲的骑行速度为: =240(米/分),
    240×(11﹣1)÷2=1200(米),
    则点M的坐标为(6,1200),
    故答案为:240,(6,1200);
    (2)设MN的解析式为:y=kx+b(k≠0),
    ∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),
    ∴,
    解得,
    ∴直线MN的解析式为:y=﹣240x+2640;
    即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;
    (3)设甲返回A地之前,经过x分两人距C地的路程相等,
    乙的速度:1200÷20=60(米/分),
    如图1所示:∵AB=1200,AC=1020,
    ∴BC=1200﹣1020=180,
    分5种情况:
    ①当0<x≤3时,1020﹣240x=180﹣60x,
    x=>3,
    此种情况不符合题意;
    ②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,
    ∴1020﹣240x=60x﹣180,
    x=4,
    ③当<x≤6时,甲在B、C之间,乙在A、C之间,
    ∴240x﹣1020=60x﹣180,
    x=<,
    此种情况不符合题意;
    ④当x=6时,甲到B地,距离C地180米,
    乙距C地的距离:6×60﹣180=180(米),
    即x=6时两人距C地的路程相等,
    ⑤当x>6时,甲在返回途中,
    当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,
    此种情况不符合题意,
    当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,
    x=8,
    综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.
    本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..
    25、见解析
    【解析】
    根据题意证明EF∥AB,即可解答
    【详解】
    证明:∵DE∥BC,
    ∴∠ADE=∠B.
    ∵∠ADE=∠EFC,
    ∴∠EFC=∠B.
    ∴EF∥AB,
    ∴四边形BDEF是平行四边形.
    此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB
    26、-5
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
    由于x≠0且x≠1且x≠﹣2,
    所以x=﹣1,
    原式=﹣2﹣3=﹣5
    本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    题号





    总分
    得分

    相关试卷

    2024年海南省海口市长流实验学校九年级数学第一学期开学联考试题【含答案】:

    这是一份2024年海南省海口市长流实验学校九年级数学第一学期开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年海南省海口市长流实验学校数学九上期末联考模拟试题含答案:

    这是一份2023-2024学年海南省海口市长流实验学校数学九上期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,关于抛物线y=-3等内容,欢迎下载使用。

    2023-2024学年海南省海口市琼山区长流实验学校九年级数学第一学期期末质量跟踪监视试题含答案:

    这是一份2023-2024学年海南省海口市琼山区长流实验学校九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算,正确的结果是,的相反数是,4的平方根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map