海南省海南枫叶国际学校2024年九年级数学第一学期开学综合测试模拟试题【含答案】
展开
这是一份海南省海南枫叶国际学校2024年九年级数学第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是( )
A.B.C.D.
2、(4分)已知平行四边形,下列条件中,不能判定这个平行四边形为菱形的是( )
A.B.C.平分D.
3、(4分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是( )
A.y3<y1<y2 B.y1<y2<y3 C.y3>y1>y2 D.y1>y2>y3
4、(4分)一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是( )
A.88 B.90 C.90.5 D.91
5、(4分)如图所示,在直角中,,,,是边的垂直平分线,垂足为,交边于点,连接,则的周长为( )
A.16B.15C.14D.13
6、(4分)一元二次方程x2-9=0的解为( )
A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
7、(4分)在函数中,自变量必须满足的条件是( )
A.B.C.D.
8、(4分)下列二次根式中,属于最简二次根式的是( )
A.B. C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为 .
10、(4分)已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为______.
11、(4分)如果多项式是一个完全平方式,那么k的值为______.
12、(4分)已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是_____.
13、(4分)如图如果以正方形的对角线为边作第二个正方形,再以对角线为边作第三个正方形,如此下去,…,已知正方形的面积为1,按上述方法所作的正方形的面积依次为,…(为正整数),那么第8个正方形的面积__.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD
(1)若存在四边形ADEF,判断它的形状,并说明理由.
(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.
(3)当△ABC满足什么条件时四边形ADEF不存在.
15、(8分)为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:
请根据以上信息,解答下列问题:
(1)被调查的学生月平均用中性笔笔芯数大约________根;
(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;
(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?
16、(8分)已知反比例函数y=的图象经过点(-1,-2).
(1)求y与x的函数关系式;
(2)若点(2,n)在这个图象上,求n的值.
17、(10分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.
(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.
18、(10分)计算
(1).
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
20、(4分)直线与轴的交点坐标是________________.
21、(4分)公路全长为skm,骑自行车t小时可到达,为了提前半小时到达,骑自行车每小时应多走_____________.
22、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.
23、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.
(1)求∠OAB的度数及直线AB的解析式;
(2)若△OCD与△BDE的面积相等,求点D的坐标.
25、(10分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.
26、(12分)在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.求证:DE=HF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.
【详解】
解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,
设点A(a,),点C(m,)(a<0,m>0),
∵四边形ABCO是平行四边形,
∴AC与BO互相平分,
∴点E(),
∵点O坐标(0,0),
∴点B[(a+m),(+)].
∵点B在反比例函数y=(x<0)的图象上,
∴,
∴a=-2m,a=m(不合题意舍去),
∴点A(-2m,),
∴四边形ACFG是矩形,
∴S△AOC=(+)(m+2m)--1=,
∴▱OABC的面积=2×S△AOC=3.
故选:A.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.
2、A
【解析】
菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.
【详解】
解:A、由平行四边形的性质可得AB=CD,所以由AB=CD不能判定平行四边形ABCD是菱形,故A选项符合题意;
B、一组邻边相等的平行四边形是菱形,故B选项不符合题意.
C、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C选项不符合题意;
D、对角线互相垂直的平行四边形是菱形,故D选项不符合题意;
故选:A.
本题考查菱形的判定方法,熟记相关判定即可正确解答.
3、D
【解析】k=-3
相关试卷
这是一份海南省海口市琼山区长流实验学校2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份海南省白沙县2025届数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。