终身会员
搜索
    上传资料 赚现金

    河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】第1页
    河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】第2页
    河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果三条线段a、b、c满足a2=(c+b)(c﹣b),那么这三条线段组成的三角形是( )
    A.直角三角形B.锐角三角形C.钝角三角形D.不能确定
    2、(4分)下列各式,计算结果正确的是( )
    A.×=10B.+=C.3-=3D.÷=3
    3、(4分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是( )
    A.B.8-2C.D.6
    4、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )
    A.A城和B城相距300km
    B.甲先出发,乙先到达
    C.甲车的速度为60km/h,乙车的速度为100km/h
    D.6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前
    5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
    A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
    6、(4分)某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是( )
    A.4,5B.4.5,6C.5,6D.5.5,6
    7、(4分)已知点在第二象限,则点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )
    A.52和54 B.52
    C.53 D.54
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ,众数是 .
    10、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
    11、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
    12、(4分)如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.
    13、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.
    (1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?
    15、(8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.
    根据图象解答下列问题:
    (1)体育场离张强家多远?张强从家到体育场用了多少时间?
    (2)体育场离文具店多远?
    (3)张强在文具店停留了多少时间?
    (4)求张强从文具店回家过程中与的函数解析式.
    16、(8分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.
    求证:AM=CN.
    17、(10分)如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE
    (1)求证:四边形BDEF是平行四边形
    (2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论
    18、(10分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.
    (1)求证:;
    (2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;
    (3)当________时,为直角三角形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=kx过点(1,3),则k的值为____.
    20、(4分)将二次函数化成的形式,则__________.
    21、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
    22、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
    23、(4分)一组数据3、4、5、5、6、7的方差是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
    (1)求反比例函数与一次函数的函数关系式;
    (2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;
    (3)连接AO、BO,求△ABO的面积;
    (4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.
    25、(10分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
    (1)求证:△AEF≌△DEB;
    (2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
    26、(12分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.
    (1)王师傅单独整理这批实验器材需要多少分钟完成;
    (2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    ∵a2=(c+b)(cb),
    ∴a2=c2﹣b2,即a2+b2=c2,
    ∴这三条线段组成的三角形是直角三角形.
    故选A.
    本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
    2、D
    【解析】
    分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.
    详解:A、原式=,所以A选项错误;
    B、与不是同类二次根式,不能合并,所以B选项错误;
    C、原式=2,所以C选项错误;
    D、原式=,所以D选项正确.
    故选:D.
    点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    3、C
    【解析】
    本题设DH=x,利用勾股定理列出方程即可.
    【详解】
    设DH=x,
    在 中,

    故选C.
    4、D
    【解析】
    根据整个行程中,汽车离开A城的距离y与时刻t的对应关系,即可得到正确结论.
    【详解】
    解:A、由题可得,A,B两城相距300千米,故A选项正确;
    B、由图可得,甲车先出发,乙车先到达B城,故B选项正确;
    C、甲车的平均速度为:300÷(10﹣5)=60(千米/时);乙车的平均速度为:300÷(9﹣6)=100(千米/时),故C选项正确;
    D、6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前,故D选项错误;
    故选:D.
    此题主要考查了看函数图象,以及一次函数的应用,关键是正确从函数图象中得到正确的信息.
    5、A
    【解析】
    根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
    【详解】
    设∠A、∠B、∠C分别为x、x、2x,
    则x+x+2x=180°,
    解得,x=45°,
    ∴∠A、∠B、∠C分别为45°、45°、90°,
    ∴a2+b2=c2,A错误,符合题意,
    c2=2a2,B正确,不符合题意;
    a=b,C正确,不符合题意;
    ∠C=90°,D正确,不符合题意;
    故选:A.
    考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
    6、D
    【解析】
    先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.
    【详解】
    解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
    ∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
    则该户今年1至6月份用水量的中位数为=5.5、众数为6,
    故选D.
    本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.
    7、D
    【解析】
    依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.
    【详解】
    ∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.
    故选D.
    本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    8、A
    【解析】
    试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
    考点:众数的计算
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、7 1
    【解析】
    根据中位数和众数的定义解答.
    【详解】
    解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;
    数据1出现2次,次数最多,所以众数是1.
    故填7;1.
    【点击】
    本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    10、
    【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
    11、68°
    【解析】
    只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠B=∠ADC=66°,AD∥BC,
    ∵AE⊥BC,
    ∴AE⊥AD,
    ∴∠EAD=90°,
    ∵F为DE的中点,
    ∴FA=FD=EF,
    ∵∠EDC=44°,
    ∴∠ADF=∠FAD=22°,
    ∴∠EAF=90°﹣22°=68°,
    故答案为:68°.
    本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    12、
    【解析】
    过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.
    【详解】
    解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4
    ∵CD′∥AB
    ∴∠BCE+∠ABC=180°,
    ∵∠ABC=90°
    ∴∠BCE=90°
    ∵AE⊥AB
    ∴∠BAE=90°
    ∴ABCE是矩形,AD′=AD=AB=4
    ∴AE=BC=3,CE=AB=4,∠AEC=90°
    ∴D′E==
    ∴CD′=CE﹣D′E=4﹣
    ∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,
    故答案为:.
    本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.
    13、6
    【解析】
    连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.
    【详解】
    连接BD,
    ∵△ACB和△ECD都是等腰直角三角形,
    ∴CE=CD,CA=CB,∠ECD=∠ACB=90°,
    ∴∠EDC=∠E=45°,∠ECA=∠DCB,
    在△ACE和△BCD中,

    ∴△ECA≌△BDC,
    ∴DB=AE=4,∠BDC=∠E=45°,
    ∴∠ADB=∠EDC+∠BDC=90°,
    ∴AD=,
    故答案为6.
    本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)时,四边形CEDF是矩形.
    【解析】
    (1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;
    (2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB =90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.
    【详解】
    (1)四边形ABCD是平行四边形,
    ∴AD//BF,
    ∴∠DEF=∠CFE,∠EDC=∠FCD,
    ∵GD=GC,
    ∴△GED≌△GFC,
    ∴GE=GF,
    ∵GD=GC,GE=GF,
    ∴四边形CEDF是平行四边形;
    (2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:
    作AP⊥BC于P,则∠APB=∠APC=90°,
    ∵∠B=60°,
    ∴∠PAB=90°-∠B=30°,
    ∴BP=AB==3cm,
    四边形ABCD是平行四边形,
    ∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,
    ∵AE=7cm,
    ∴DE=AD-AE=3cm=BP,
    ∴△ABP≌△CDE,
    ∴∠CED=∠APB=90°,
    又∵四边形CEDF是平行四边形,
    ∴平行四边形CEDF是矩形,
    即当AE=7cm时,四边形CEDF是矩形.
    本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.
    15、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()
    【解析】
    (1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.
    (2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.
    (3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.
    (4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.
    【详解】
    解:
    (1)体育场离张强家,张强从家到体育场用了
    (2)体育场离文具店
    (3)张强在文具店停留了
    (4)设张强从文具店回家过程中与的函数解析式为,
    将点,代入得

    解得,
    ∴()
    本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.
    16、见解析.
    【解析】
    由题意可证△AEM≌△FNC,可得结论.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴BE∥DF,AD∥BC
    ∴∠E=∠F,∠AME=∠BNE
    又∵∠BNE=∠CNF
    ∴∠AME=∠CNF
    在△AEM和OCFN中
    ∴ΔAEM≌ΔCFN(AAS)
    ∴AM=CN.
    考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.
    17、(1)见解析;(2),理由见解析
    【解析】
    (1)延长CE交AB于点G,证明,得E为中点,通过中位线证明DEAB,结合BF=DE,证明BDEF是平行四边形
    (2)通过BDEF为平行四边形,证得BF=DE=BG,再根据,得AC=AG,用AB-AG=BG,可证
    【详解】
    (1)证明:延长CE交AB于点G
    ∵AECE

    在和

    ∴GE=EC
    ∵BD=CD
    ∴DE为的中位线
    ∴DEAB
    ∵DE=BF
    ∴四边形BDEF是平行四边形
    (2)
    理由如下:
    ∵四边形BDEF是平行四边形
    ∴BF=DE
    ∵D,E分别是BC,GC的中点
    ∴BF=DE=BG

    ∴AG=AC
    BF=(AB-AG)=(AB-AC).
    本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.
    18、(1)详见解析;(2)能;(3)2或秒
    【解析】
    (1)在中,,,由已知条件求证;
    (2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;
    (3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.
    【详解】
    (1)在中,

    又∵

    (2)能. 理由如下:
    ∵,

    又∵
    ∴四边形为平行四边形
    在中,

    又∵

    ∴,

    当时,为菱形
    ∴AD=
    ∴,即秒时,四边形为菱形
    (3)①时,四边形为矩形.
    在中,,

    即,.
    ②时,由(2)四边形为平行四边形知,



    则有,.
    ③当时,此种情况不存在.
    综上所述,当秒或秒时,为直角三角形.
    本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    将点(1,1)代入函数解析式即可解决问题.
    【详解】
    解:∵直线y=kx过点(1,1),
    ∴1=k,
    故答案为:1.
    本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.
    20、
    【解析】
    利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
    【详解】
    解:,


    故答案为:.
    本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
    21、1
    【解析】
    把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
    【详解】
    ∵点A(1,n)在一次函数y=3x﹣2的图象上,
    ∴n=3×1﹣2=1.
    故答案为:1.
    本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
    22、18
    【解析】
    利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
    【详解】
    ∵CE平分∠BCD交AD边于点E,
    ∴.∠ECD=∠ECB
    ∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
    ∴∠DEC=∠ECB,
    ∴∠DEC=∠DCE
    ∴DE=DC
    ∵AD=2AB
    ∴AD=2CD
    ∴AE=DE=AB=3
    ∴AD=6
    ∴四边形ABCD的周长为:2×(3+6)=18.
    故答案为:18.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
    23、
    【解析】
    首先求出平均数,然后根据方差的计算法则求出方差.
    【详解】
    解: 平均数 =(3+4+5+5+6+7)÷6=5
    数据的方差 S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=
    故答案为 .
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    【解析】
    (1)利用待定系数法求得一次函数与反比例函数的解析式;
    (2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
    (1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
    (3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.
    【详解】
    解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
    ∵B(n,-1)在y=的图象上,
    ∴n=-1.
    ∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
    ∴,
    解得m=1,b=2.
    ∴两函数关系式分别是:y=和y=x+2.
    (2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
    (1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
    ∵A(1,1),B(-1,-1)
    ∴S△DBO=×1×2=1,S△DAO=×1×2=1
    ∴S△ABO=S△DBO+S△DAO=3.
    (3)OA= = ,
    O是△AOP顶角的顶点时,OP=OA,则P(0,- )或P(0,),
    A是△AOP顶角的顶点时,由图象得, P(0,6),
    OA是底边,P是△AOP顶角的顶点时,
    设 P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,
    则AP=OP=x,PM=1,AM=1-x,
    在Rt△APM中, 即
    解得x= ,
    ∴P(0,).
    故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.
    25、(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.
    【解析】
    【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;
    (2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.
    【详解】(1)∵E是AD的中点,
    ∴AE=DE,
    ∵AF∥BC,
    ∴∠AFE=∠DBE,∠EAF=∠EDB,
    ∴△AEF≌△DEB(AAS);
    (2)连接DF,
    ∵AF∥CD,AF=CD,
    ∴四边形ADCF是平行四边形,
    ∵△AEF≌△DEB,
    ∴BE=FE,
    ∵AE=DE,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB,
    ∵AB=AC,
    ∴DF=AC,
    ∴四边形ADCF是矩形.
    【点睛】本题考查了全等三角形的判定与性质、矩形的判定等,熟练掌握全等三角形的判定与性质是解题的关键.
    26、(1)王师傅单独整理这批实验器材需要80分钟.(2)李老师至少要工作1分钟.
    【解析】
    (1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;
    (2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.
    【详解】
    解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,
    由题意,得:20(+)+20×=1,
    解得:x=80,
    经检验得:x=80是原方程的根.
    答:王师傅单独整理这批实验器材需要80分钟.
    (2)设李老师要工作y分钟,
    由题意,得:(1﹣)÷≤30,
    解得:y≥1.
    答:李老师至少要工作1分钟.
    考点:分式方程的应用;一元一次不等式的应用.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届河北省邯郸市锦玉中学数学九上开学检测试题【含答案】:

    这是一份2025届河北省邯郸市锦玉中学数学九上开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河北省邯郸市邯郸市育华中学数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届河北省邯郸市邯郸市育华中学数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河北省邯郸市育华中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年河北省邯郸市育华中学九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map