终身会员
搜索
    上传资料 赚现金

    河北省衡水中学2024年九上数学开学达标测试试题【含答案】

    立即下载
    加入资料篮
    河北省衡水中学2024年九上数学开学达标测试试题【含答案】第1页
    河北省衡水中学2024年九上数学开学达标测试试题【含答案】第2页
    河北省衡水中学2024年九上数学开学达标测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省衡水中学2024年九上数学开学达标测试试题【含答案】

    展开

    这是一份河北省衡水中学2024年九上数学开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是( )
    A.60°B.90°C.120°D.150°
    2、(4分)△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为( )
    A.B.C.D.
    3、(4分)若线段a,b,c组成直角三角形,则它们的比可以为( )
    A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶10
    4、(4分)下图入口处进入,最后到达的是( )
    A.甲B.乙C.丙D.丁
    5、(4分)为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指( )
    A.200
    B.我县2019年八年级学生期末数学成绩
    C.被抽取的200名八年级学生
    D.被抽取的200名我县八年级学生期末数学成绩
    6、(4分)若分式的值为零,则的值为( )
    A.B.C.D.
    7、(4分)如图,已知点A(0,9),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC使点C在第一象限,∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y则表示y与x的函数关系的图象大致是( )
    A.B.
    C.D.
    8、(4分)如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )
    A.①②B.②③C.①③D.①②③
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,△ABC 和△BDE 都是等边三角形,A、B、D 三点共线.下列结论:①AB=CD;②BF=BG;③HB 平分∠AHD;④∠AHC=60°,⑤△BFG 是等边三角形.其中正确的有____________(只填序号).
    10、(4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为__________.
    11、(4分)如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)
    12、(4分)在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.
    13、(4分)如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
    15、(8分)如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
    (1)求证: BD=DE+CE.
    (2)若直线AE绕A点旋转到图②位置时(BD(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
    (4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
    16、(8分)如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.
    求证:≌;
    当时,求的度数.
    17、(10分)已知点P(1,m)、Q(n,1)在反比例函数y=的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.
    (1)求 k、b的值;
    (2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.
    18、(10分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
    收集数据如下:
    七年级:
    八年级:
    整理数据如下:
    分析数据如下:
    根据以上信息,回答下列问题:
    (1)a=______,b=______;
    (2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
    (3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.
    20、(4分)如图,在平行四边形中,在上,且,若的面积为3,则四边形的面积为______.
    21、(4分)如图,的对角线,相交于点,且,,,则的面积为______.
    22、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
    23、(4分)在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.
    ⑴求线段CE的长;
    ⑵若点H为BC边的中点,连结HD,求证:.
    25、(10分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O.
    (1)尺规作图:以OA、OD为边,作矩形OAED(不要求写作法,但保留作图痕迹);
    (2)若在菱形ABCD中,∠BAD=120 °,AD=2,求所作矩形OAED的周长.
    26、(12分)如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
    (1)求证:AE=CE;
    (2)求证:四边形ABDF是平行四边形;
    (3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.
    故选D.
    考点:旋转的性质.
    2、D
    【解析】
    直接根据相似三角形的性质即可得出结论.
    【详解】
    解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,
    ∴△ABC与△DEF的面积比=()2=1:16,
    故答案为:D
    本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.
    3、B
    【解析】
    要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.
    【详解】
    A. 22+32≠42,故本选项错误;
    B. 72+242=252,故本选项正确;
    C. 52+122≠142,故本选项错误;
    D. 4262≠102,故本选项错误.
    故选B.
    本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.
    4、C
    【解析】
    根据平行四边形的性质和对角线的定义对命题进行判断即可.
    【详解】
    等腰梯形也满足此条件,可知该命题不是真命题;
    根据平行四边形的判定方法,可知该命题是真命题;
    根据题意最后最后结果为丙.
    故选C.
    本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.
    5、D
    【解析】
    根据样本是总体中所抽取的一部分个体解答即可.
    【详解】
    本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.
    故选:D.
    本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    6、C
    【解析】
    直接利用分式的值为零则分子为零,分母不为零,进而得出答案.
    【详解】
    解:∵分式的值为零,
    ∴x2−1=0且x2+x−2≠0,
    解得:x=−1.
    故选:C.
    此题主要考查了分式的值为零的条件,正确解方程是解题关键.
    7、A
    【解析】
    过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.
    【详解】
    解:过点C作CD⊥y轴于点D,
    ∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,
    ∴∠CAD=∠ABO,
    ∵∠CDA=∠AOB=90°,AB=AC,
    ∴△CDA≌△AOB(AAS),
    ∴AD=OB=x,
    y=OA+AD=9+x,
    故选:A.
    本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键
    8、A
    【解析】
    连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.
    【详解】
    连接AP,
    ∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
    ∴AP是∠BAC的平分线,∠1=∠2,
    ∴△APR≌△APS,
    ∴AS=AR,
    又AQ=PQ,
    ∴∠2=∠3,
    又∠1=∠2,
    ∴∠1=∠3,
    ∴QP∥AR,
    BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.
    故选A.
    本题主要考查角平分线的判定和平行线的判定;准确作出辅助线是解决本题的关键,做题时要注意添加适当的辅助线,是十分重要的,要掌握.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、②③④⑤
    【解析】
    由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.
    【详解】
    ∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
    ∴∠ABE=∠CBD,
    在△ABE和△CBD中,

    ∴△ABE≌△CBD(SAS),
    ∴AE=CD,∠BDC=∠AEB,
    又∵∠DBG=∠FBE=60°,
    ∴在△BGD和△BFE中,

    ∴△BGD≌△BFE(ASA),
    ∴BG=BF,∠BFG=∠BGF=60°,
    ∴△BFG是等边三角形,
    ∴FG∥AD,
    在△ABF和△CGB中,

    ∴△ABF≌△CGB(SAS),
    ∴∠BAF=∠BCG,
    ∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,
    ∴∠AHC=60°,
    ∴②③④⑤都正确.
    故答案为②③④⑤.
    本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.
    10、
    【解析】
    设BE=x,则CE=BC﹣BE=16﹣x,
    ∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,
    在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,
    由翻折的性质得,∠AEF=∠CEF,
    ∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,
    过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF= = =.
    故答案为 .
    点睛:本题考查矩形的翻折,解题时要注意函数知识在生产生活中的实际应用,注意用数学知识解决实际问题能力的培养.
    11、①③④.
    【解析】
    如图,作AM⊥y轴于M,AN⊥OE于N.首先证明四边形AMON是正方形,再证明△AMF≌△ANB(ASA),△AMC≌△ANE(ASA),△AFC≌△ABE(SSS)即可解决问题.
    【详解】
    解:如图,作AM⊥y轴于M,AN⊥OE于N.
    ∵A(4,4),
    ∴AM=AN=4,
    ∵∠AMO=∠ONA=90°,
    ∴四边形ANON是矩形,
    ∵AM=AN,
    ∴四边形AMON是正方形,
    ∴OM=ON=4,
    ∴∠MAN=90°,
    ∵CD⊥EF,
    ∴∠FAC=∠MAN=90°,
    ∴△AMF≌△ANB(ASA),∴FM=BN,
    ∴OF+OB=OM+FM+ON-BN=2OM=8,故③正确,
    同法可证△AMC≌△ANE(ASA),
    ∴CM=NE,AC=AE,故①正确;
    ∵FM=BN,
    ∴CF=BE,
    ∵AC=AE,AF=AB,
    ∴△AFC≌△ABE(SSS),
    ∴S△ABE-S△BOC=S△AFC-S△BOC=S四边形ABOF=S正方形AMON=16,故④正确,
    当BE为定值时,点P是动点,故PC≠BE,故②错误,
    故答案为①③④.
    本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    12、丙
    【解析】
    方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    因为=0.56,=0.60,=0.45,=0.50,
    所以<<<,由此可得成绩最稳定的为丙.
    故答案为:丙.
    此题考查方差,解题关键在于掌握其定义.
    13、5cm
    【解析】
    只要得出OE是△ABC的中位线,从而求得OE的长.
    【详解】
    解:∵OE∥DC,AO=CO,
    ∴OE是△ABC的中位线,
    ∵四边形ABCD是菱形,
    ∴AB=AD=10cm,
    ∴OE=5cm.
    故答案为5cm.
    本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.
    三、解答题(本大题共5个小题,共48分)
    14、BC边上的高AD=.
    【解析】
    作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
    【详解】
    作AD⊥BC于D,
    由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
    ∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
    解得,CD=1,
    则BC边上的高AD=.
    考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    15、 (1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.
    【解析】
    (1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出∠ABD=∠CAE,从而证明出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.
    【详解】
    (1)∵BD⊥AE,CE⊥AE
    ∴∠ADB=∠CEA=90°
    ∴∠ABD+∠BAD=90°
    又∵∠BAC=90°
    ∴∠EAC+∠BAD=90°
    ∴∠ABD=∠CAE
    在△ABD与△ACE
    ∴△ABD≌△ACE
    ∴BD=AE,AD=EC
    ∴BD=DE+CE
    (2)、∵BD⊥AE,CE⊥AE
    ∴∠ADB=∠CEA=90°
    ∴∠ABD+∠BAD=90°
    又∵∠BAC=90°
    ∴∠EAC+∠BAD=90°
    ∴∠ABD=∠CAE
    在△ABD与△ACE
    ∴△ABD≌△ACE
    ∴BD=AE,AD=EC
    ∴BD=DE–CE
    (3)、同理:BD=DE–CE
    (4)、归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD =DE –CE;当B,C在AE的异侧时,∴BD=DE+CE
    考点:三角形全等的证明与性质
    16、证明见解析;.
    【解析】
    【分析】由题意可知:,,由于,从而可得,根据SAS即可证明≌;
    由≌可知:,,从而可求出的度数.
    【详解】由题意可知:,,




    在与中,

    ≌;
    ,,

    由可知:,


    .
    【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.
    17、(1)k=﹣1,b=6;(2)满足条件的点D坐标是(12,﹣12)或(6,﹣6)
    【解析】
    (1)把P、Q的坐标代入反比例函数解析式可求得m、n的值,再把P、Q坐标代入直线解析式可求得k、b的值;
    (2)结合(1)可先求得A、B坐标,可求得C点坐标,再由条件可求得直线OD的解析式,由BO=CD可求得D点坐标.
    【详解】
    解:
    (1)把P(1,m)代入y= ,得 m=5,
    ∴P(1,5),
    把Q(n,1)代入y=,得 n=5,
    ∴Q(5,1),
    P(1,5)、Q(5,1)代入y=kx+b得 ,解得 ,
    即k=﹣1,b=6;
    (2)由(1)知 y=﹣x+6,
    ∴A(6,0)B(0,6)
    ∵C点在直线AB上,
    ∴设C(x,﹣x+6),
    由AB=AC得,
    解得x=12或x=0(不合题意,舍去),
    ∴C(12,﹣6),
    ∵直线OD∥BC 且过原点,
    ∴直线OD解析式为y=﹣x,
    ∴可设D(a,﹣a),
    由OB=CD 得6= ,
    解得a=12或a=6,
    ∴满足条件的点D坐标是(12,﹣12)或(6,﹣6)
    此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式
    18、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
    【解析】
    (1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
    (2)从中位数、众数、方差进行分析,调查结论,
    (3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
    【详解】
    (1) a=20-1-10-1=8,b=(88+89)÷2=88.1
    故答案为:8,88.1.
    (2)你认为 八 年级知识竞赛的总体成绩较好
    理由1:八年级成绩的中位数较高;
    理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
    或者
    你认为 七 年级知识竞赛的总体成绩较好,
    理由1:七年级的平均成绩较高;
    理由2:低分段人数较少。 (答案不唯一,合理即可)
    (3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
    180+280=460人.
    考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(0,-3).
    【解析】
    直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,
    即y=3x-3,
    当x=0时,y=-3,
    即与y轴交点坐标为(0,-3).
    20、9
    【解析】
    根据平行四边形的性质得到△ABE和△EDC的高相同,即可求出的面积为,再由进行解题即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,即△ABE和△EDC的高相同,
    ∵,的面积为3,
    ∴的面积为,
    ∴四边形的面积=6+3=9
    故答案是:9
    本题考查了平行四边形的性质,平行线间的三角形的关系,属于基础题,熟悉平行四边形的性质是解题关键.
    21、1
    【解析】
    已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=AC=5,OB=BD=13,再利用勾股定理的逆定理判定∠BAC=90°, 由平行四边形的面积公式求解即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=AC=5,OB=BD=13,
    ∵AB=12,
    ∴OA2+OB2=AB2,
    ∴AC⊥AB,
    ∴∠BAC=90°,
    ∴▱ABCD的面积=AB•AC=12×10=1;
    故答案为:1.
    本题考查了平行四边形的性质及勾股定理的逆定理,正确判定∠BAC=90°是解决问题的关键.
    22、三
    【解析】
    根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.
    【详解】
    解:∵点A(m,n)在第二象限,
    ∴m<0,n>0,
    ∴-n<0,m<0,
    ∵点B(-n,m)在第三象限,
    故答案为三.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    23、0.8
    【解析】
    由一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.
    【详解】
    解:∵一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,
    ∴从口袋中随机摸一个球,则摸到红球的概率为:
    故答案为:0.8
    此题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
    二、解答题(本大题共3个小题,共30分)
    24、(1)CE=;(2)见解析.
    【解析】
    根据正方形的性质,
    (1)先设CE=x(0(2)根据勾股定理得到HD,再由H,C,G在同一直线上,得证HD=HG.
    【详解】
    根据题意,得AD=BC=CD=1,∠BCD=90°.
    (1)设CE=x(0因为S1=S2,所以x2=1-x,
    解得x=(负根舍去),
    即CE=
    (2)因为点H为BC边的中点,
    所以CH=,所以HD=,
    因为CG=CE=,点H,C,G在同一直线上,
    所以HG=HC+CG=+=,所以HD=HG
    本题考查正方形的性质、勾股定理和一元二次函数,解题的关键是根据题意列出一元二次函数.
    25、(1)见解析;(2)
    【解析】
    (1)根据矩形的性质,对边相等,分别以点A、D为圆心,以AO、DO为半径画弧相交即可作出图形;
    (2)利用菱形的性质,求出∠AOD=90°,∠OAD=60°,根据直角三角形中,30°角所对的边是斜边的一半,可求出AO,由勾股定理可求出OD,计算即可得出结果.
    【详解】
    (1)根据矩形的性质可知,四个角都是90°,对边相等,以点D为圆心,以AO长为半径画弧,以点A为圆心,以OD长为半径画弧,相交与点E,连接AE,DE,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,可得出四边形AODE是有一个角是90°的平行四边形,
    ∴OAED是矩形,如图即为所求;
    (2)在菱形ABCD中,∠BAD=120 °,AD=2,
    ∴ AC⊥BD, AC平分∠BAD,
    ∴∠AOD=90 °,∠OAD=∠BAD=60 °,
    ∴∠ODA=90 °-∠OAD=30 °,
    ∴OA=AD=1,
    在Rt△OAD中,,
    ∴矩形OAED的周长为,
    故答案为:.
    考查了尺规作图的方法,需要熟悉图形的性质,菱形的性质应用,勾股定理求边长的应用,掌握图形的性质是解题的关键.
    26、(1)见解析;(2)见解析;(3)1
    【解析】
    (1)根据平行线的性质得出,根据全等三角形的判定得出,根据全等三角形的性质得出即可;
    (2)根据平行四边形的判定推出即可;
    (3)求出高和,再根据面积公式求出即可.
    【详解】
    解:(1)证明:∵点E是BD的中点,
    ∴BE=DE,
    ∵AD∥BC,
    ∴∠ADE=∠CBE,
    在△ADE和△CBE中
    ∴△ADE≌△CBE(ASA),
    ∴AE=CE;
    (2)证明:∵AE=CE,BE=DE,
    ∴四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵DF=CD,
    ∴DF=AB,
    即DF=AB,DF∥AB,
    ∴四边形ABDF是平行四边形;
    (3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,
    ∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,
    ∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,
    ∴∠BDC=∠F=30°,
    ∴DQ=DF==1,CH=DC==1,
    ∴四边形ABCF的面积S=S平行四边形BDFA+S△BDC=AF×DQ+=4×1+=1,
    故答案为:1.
    本题考查了平行四边形的性质和判定,三角形的面积等知识点,能综合运用定理进行推理是解此题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    河北省衡水中学2024-2025学年九上数学开学达标测试试题【含答案】:

    这是一份河北省衡水中学2024-2025学年九上数学开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河北省衡水市八校2024年数学九上开学综合测试模拟试题【含答案】:

    这是一份河北省衡水市八校2024年数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河北省泊头市2025届数学九上开学达标检测试题【含答案】:

    这是一份河北省泊头市2025届数学九上开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map