河北省唐山乐亭县联考2025届九年级数学第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若a>b,则下列结论不一定成立的是( )
A.a-1>b-1B.C.D.-2a<-2b
2、(4分)已知下面四个方程: +3x=9;+1=1;=1;=1.其中,无理方程的个数是( )
A.1B.2C.3D.4
3、(4分)平行四边形中,,则的度数是( )
A.B.C.D.
4、(4分)当k<0时,一次函数y=kx﹣k的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程=1有非负整数解的概率是( )
A.B.C.D.
6、(4分)点在反比例函数的图像上,则的值为( )
A.B.C.D.
7、(4分)将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )
A.2种B.4种C.6种D.无数种
8、(4分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:
则在这次活动中,该班同学捐款金额的众数和中位数分别是( )
A.20元,30元B.20元,35元C.100元,35元D.100元,30元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
10、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
11、(4分)计算:=_____________。
12、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
13、(4分)若解分式方程产生增根,则m=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
15、(8分)在平面直角坐标系中,已知,,三点的坐标.
(1)写出点关于原点的对称点的坐标,点关于轴的对称点的坐标,点关于轴的对称点的坐标;
(2)求(1)中的的面积.
16、(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
17、(10分)阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.
解:设x2﹣4x=y
原式=(y+1)(y+7)+9(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
请根据上述材料回答下列问题:
(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;
(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
18、(10分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.
(1)求中巴车和大客车各有多少个座位?
(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________
20、(4分)若点A(﹣2,4)在反比例函数的图像上,则k的值是____.
21、(4分)从A,B两题中任选一题作答:
A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
22、(4分)对于反比例函数,当时,其对应的值、、的大小关系是______.(用“”连接)
23、(4分)若因式分解:__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
(1)该地出租车起步价是_____元;
(2)当x>2时,求y与x之间的关系式;
(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
25、(10分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
26、(12分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.
(1)求证:;
(2)若是等腰直角三角形,,是的中点,,连接,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,根据不等式的性质判断即可.
【详解】
A.不等式a>b两边同时减1,a-1>b-1一定成立;
B.不等式a>b两边同时除以3,一定成立;
C.不等式a>b两边同时平方,不一定不成立,可举反例:,但是;
D.不等式a>b两边同时乘以-2,-2a<-2b一定成立.
故选C.
本题考查不等式的性质,熟记不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,是解题的关键.
2、A
【解析】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.
【详解】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,
故选:A.
本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..
3、D
【解析】
根据平行四边形的对角相等、相邻内角互补求解.
【详解】
∵平行四形ABCD
∴∠B=∠D=180°−∠A
∴∠B=∠D=80°
∴∠B+∠D=160°
故选:D.
本题考查的是利用平行四边形的性质,必须熟练掌握.
4、C
【解析】
试题分析:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.
考点:一次函数图象与系数的关系.
5、C
【解析】
先解出不等式组,找出满足条件的a的值,然后解分式方程,找出满足非负整数解的a的值,然后利用同时满足不等式和分式方程的a的个数除以总数即可求出概率.
【详解】
解不等式组得: ,
由不等式组至少有四个整数解,得到a≥﹣3,
∴a的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,
分式方程去分母得:﹣a﹣x+2=x﹣3,
解得:x= ,
∵分式方程有非负整数解,
∴a=5、3、1、﹣3,
则这9个数中所有满足条件的a的值有4个,
∴P=
故选:C.
本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.
6、B
【解析】
把点M代入反比例函数中,即可解得K的值.
【详解】
解:∵点在反比例函数的图像上,
∴,解得k=3.
本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.
7、D
【解析】
平行四边形的两条对角线交于一点,这个点是平行四边形的对称中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.
【详解】
∵平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,
∴这样的折纸方法共有无数种.
故选D.
本题主要考查平行四边形的性质,掌握平行四边形是中心对称图形,是解题的关键.
8、A
【解析】
观察图表可得,捐款金额为20元的学生数最多为20人,所以众数为20元;已知共有50位同学捐款,可得第25位同学和26位同学捐款数的平均数为中位数,即中位数为=30元;故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
【详解】
解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
解得,a=1.
故答案是:1.
考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
10、1
【解析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
【详解】
解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.
本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
11、2+
【解析】
按二次根式的乘法法则求解即可.
【详解】
解:.
本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.
12、45°
【解析】
∵四边形ABCD是平行四边形,
∴∠A=∠C, ∠A+∠B=180º.
∵∠A+∠C=270°,
∴∠A=∠C=135º,
∴∠B=180º-135º=45º.
故答案为45º.
13、-5
【解析】
试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
故答案为-5.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).
【解析】
试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;
(2)根据正方形的判定方法添加即可.
试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;
(2)AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.
或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.
15、 (1) A′的坐标为(1,−5), B′的坐标为(4,−2), C′的坐标为(1,0);(2).
【解析】
(1)根据点关于原点对称、关于x轴的对称和关于y轴对称的点的坐标特征求解;
(2)利用三角形面积公式求解.
【详解】
(1)点A关于原点O的对称点A′的坐标为(1,−5),点B关于x轴的对称点B′的坐标为(4,−2),点C关于y轴的对称点C′的坐标为(1,0).
(2)以A′C′为底边,B′D为高,可得:△A′B′C′的面积=×5×3=.
此题考查坐标与图形-对称轴变换,解题关键在于掌握运算公式.
16、(1)购进型台灯盏,型台灯25盏;
(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
【解析】
试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则y=(45﹣30)x+(70﹣50)(100﹣x),
=15x+2000﹣20x,
=﹣5x+2000,
∵B型台灯的进货数量不超过A型台灯数量的3倍,
∴100﹣x≤3x,
∴x≥25,
∵k=﹣5<0,
∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
考点:1.一元一次方程的应用;2.一次函数的应用.
17、(1)C;(2)(x﹣2)1;(3)(x+1)1.
【解析】
(1)根据完全平方公式进行分解因式;
(2)最后再利用完全平方公式将结果分解到不能分解为止;
(3)根据材料,用换元法进行分解因式.
【详解】
(1)故选C;
(2)(x2﹣1x+1)(x2﹣1x+7)+9,设x2﹣1x=y,则:
原式=(y+1)(y+7)+9=y2+8y+16=(y+1)2=(x2﹣1x+1)2=(x﹣2)1.
故答案为:(x﹣2)1;
(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)1.
本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
18、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
【解析】
试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.
(1)在保证学生都有座位的前提下,有三种租车方案:
①单独租用中巴车,需要租车辆,可以计算费用.
②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.
③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.
解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有
解之得:x1=45,x1=﹣90(不合题意,舍去).
经检验x=45是分式方程的解,
故大客车有座位:x+15=45+15=60个.
答:每辆中巴车有座位45个,每辆大客车有座位60个.
(1)解法一:
①若单独租用中巴车,租车费用为×350=1100(元)
②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)
③设租用中巴车y辆,大客车(y+1)辆,则有
45y+60(y+1)≥170
解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求
这时租车费用为350×1+400×3=1900(元)
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
解法二:①、②同解法一
③设租用中巴车y辆,大客车(y+1)辆,则有
350y+400(y+1)<1000
解得:.
由y为整数,得到y=1或y=1.
当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;
当y=1时,运送人数为45×1+60×3=170,符合要求.
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、9
【解析】
根据中位数的定义,首先确定x的值,再计算方差.
【详解】
解:首先根据题意将所以数字从小到达排列,可得-3,-2,1,3,6
因为这五个数的中位数为1
再增加x后要使中位数为1,则
因此可得x=1
所以平均数为:
所以方差为:
故答案为9.
本题主要考查根据中位数求未知数和方差的计算,关键在于根据题意计算未知数.
20、-8
【解析】
把点A(﹣2,4)代入反比例函数即可求解.
【详解】
把点A(﹣2,4)代入反比例函数得k=-2×4=-8.
故答案为-8
此题主要考查反比例函数的求解,解题的关键是熟知待定系数法确定函数关系式.
21、A.5 B.
【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
【详解】
A.由尺规作图可得直线MN为线段AB的垂直平分线,
∴BF=AF=6,E为AB中点,
∵点G为AC中点,
∴EG为ΔABC的中位线,
∴EG∥BC且EG =BC,
∵BF+FC=10,
∴EG=5;
B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
∵BD=DC, ∴AB+AE=EC.
∵AB=AB′, ∴EB′=EC,
∴DE为ΔCBB′的中位线.
∵∠BAC=60°,
∴ΔBAB′为顶角是120°的等腰三角形 ,
∴∠B=∠B′=30°,
∴AF=1,
∴BF=,
∴BB′=2,
∴ED=.
故答案为:A. 5;B.
本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
22、
【解析】
根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,再根据,即可比较、、的大小关系.
【详解】
解:根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,而,则,而,则,
故答案为.
本题考查反比例函数,难度不大,是中考的常考知识点,熟记反比例函数的性质是顺利解题的关键.
23、
【解析】
应用提取公因式法,公因式x,再运用平方差公式,即可得解.
【详解】
解:
此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
二、解答题(本大题共3个小题,共30分)
24、 (1)10;(2)y=2x+6;(3)这位乘客需付出租车车费42元.
【解析】
(1)由图象知x=0时,y=10可得答案;
(2)先求得出租车每公里的单价,根据车费=起步价+超出部分费用可得函数解析式;
(3)将x=18代入(2)中所求函数解析式.
【详解】
解:(1)由函数图象知,出租车的起步价为10元,
故答案为10;
(2)当x>2时,每公里的单价为(14﹣10)÷(4﹣2)=2,
∴当x>2时,y=10+2(x﹣2)=2x+6;
(3)当x=18时,y=2×18+6=42元,
答:这位乘客需付出租车车费42元.
此题考查了函数图象,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
25、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
【解析】
试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
故答案为10;2.
(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
(3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
26、(1)见解析;(2)
【解析】
(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,可得AC=HF=EG,即可推出EF=GH.
(2)首先证明∠BCF=90°,在Rt△BCF中,利用勾股定理即可解决问题;
【详解】
(1)证明:四边形是平行四边形,
.
四边形是平行四边形,四边形是平行四边形.
∴
∴
(2)解:连接,如解图.
,是的中点,.
,
.
,
.
本题考查平行四边形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
金额(元)
20
30
35
50
100
学生数(人)
20
10
5
10
5
2025届河北省唐市山乐亭县九年级数学第一学期开学联考试题【含答案】: 这是一份2025届河北省唐市山乐亭县九年级数学第一学期开学联考试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2025届河北省唐山市乐亭县九上数学开学统考试题【含答案】: 这是一份2025届河北省唐山市乐亭县九上数学开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省唐山市乐亭县2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份河北省唐山市乐亭县2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中,不正确的是,下列计算正确的是等内容,欢迎下载使用。