![河北省唐山市迁安市2025届数学九年级第一学期开学复习检测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16276104/0-1729553425899/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省唐山市迁安市2025届数学九年级第一学期开学复习检测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16276104/0-1729553425933/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省唐山市迁安市2025届数学九年级第一学期开学复习检测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16276104/0-1729553425960/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河北省唐山市迁安市2025届数学九年级第一学期开学复习检测试题【含答案】
展开
这是一份河北省唐山市迁安市2025届数学九年级第一学期开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2B.4C.6D.8
2、(4分)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):
下列说法错误的是( )
A.在这个变化中,自变量是温度,因变量是声速
B.温度越高,声速越快
C.当空气温度为20℃时,声音5s可以传播1740m
D.当温度每升高10℃,声速增加6m/s
3、(4分)以下运算错误的是( )
A.B.
C.D.
4、(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A.B.C.D.
5、(4分)下列调查适合抽样调查的是( )
A.审核书稿中的错别字
B.对某校八一班同学的身高情况进行调查
C.对某校的卫生死角进行调查
D.对全县中学生目前的睡眠情况进行调查
6、(4分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( )
A.2B.3C.4D.5
7、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是( )
A.B.2C.2D.4
8、(4分)某学习小组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据中位数是( )
A.12 B.13 C.14 D.17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
10、(4分)在周长为的平行四边形中,相邻两条边的长度比为,则这个平行四边形的较短的边长为________.
11、(4分)定理“对角线互相平分的四边形是平行四边形”的逆命题是________
12、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
13、(4分)等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,直线与轴交于点,与轴交于点,.
(1)求两点的坐标;
(2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.
15、(8分)解不等式组
16、(8分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.
17、(10分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.
18、(10分)在中,,,动点以每秒1个单位的速度从点出发运动到点,点以相同的速度从点出发运动到点,两点同时出发,过点作交直线于点,连接、,设运动时间为秒.
(1)当和时,请你分别在备用图1,备用图2中画出符合题意的图形;
(2)当点在线段上时,求为何值时,以、、、为顶点的四边形是平行四边形;
(3)当点在线段的延长线上时,是否存在某一时刻使,若存在,请求出的值;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当k=_____时,100x2﹣kxy+49y2是一个完全平方式.
20、(4分)实数,在数轴上对应点的位置如图所示,化简的结果是__________.
21、(4分)已知,则 ___________ .
22、(4分)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是_____米/分钟.
23、(4分)若,,则代数式__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.
(1)证明:BE=CF.
(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
25、(10分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.
(1)求的值和点的坐标;
(2)求直线的解析式;
(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.
26、(12分)如图,已知四边形DFBE是矩形,C,A分别是DF,BE延长线上的点, , 求证:
(1)AE=CF.
(2)四边形ABCD是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
【详解】
解:如图,连接AP,AN,点A是正方形的对角线的交
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,
而△NAP的面积是正方形的面积的,而正方形的面积为4,
∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
故选B.
【点评】
本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
2、C
【解析】
根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.
【详解】
∵在这个变化中,自变量是温度,因变量是声速,
∴选项A正确;
∵根据数据表,可得温度越高,声速越快,
∴选项B正确;
∵342×5=1710(m),
∴当空气温度为20℃时,声音5s可以传播1710m,
∴选项C错误;
∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),
∴当温度每升高10℃,声速增加6m/s,
∴选项D正确.
故选C.
此题主要考查了自变量、因变量的含义和判断,要熟练掌握.
3、B
【解析】
A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.
4、C
【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
【详解】
如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,
,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选C.
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
5、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可.
【详解】
解:A、审核书稿中的错别字适合全面调查;
B、对某校八一班同学的身高情况进行调查适合全面调查;
C、对某校的卫生死角进行调查适合全面调查;
D、对全县中学生目前的睡眠情况进行调查适合抽样调查;
故选:D.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、B
【解析】
根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.
【详解】
∵这组数据有唯一的众数4,
∴x=4,
∵将数据从小到大排列为:1,2,1,1,4,4,4,
∴中位数为:1.
故选B.
本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.
7、B
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选:B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
8、C
【解析】分析:根据中位数的意义求解即可.
详解:从小到大排列:12,12,13,14,16,17,18,
∵14排在中间,
∴中位数是14.
故选C.
点睛: 本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
【详解】
(),
由勾股定理得(),
则玻璃棒露在容器外的长度的最小值是().
故答案为.
考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
10、1
【解析】
由已知可得相邻两边的和为9,较短边长为xcm,则较长边长为2x,解方程x+2x=9即可.
【详解】
因为平行四边形周长为18cm,所以相邻两边的长度之和为9cm.设较短边长为xcm,则较长边长为2x,所以x+2x=9,解得x=1.故答案为1.
本题主要考查了平行四边形的性质,解决平行四边形周长问题一定要熟记平行四边形周长等于两邻边和的2倍.
11、平行四边形的对角线互相平分
【解析】
题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆命题.
【详解】
逆命题是:平行四边形的对角线互相平分.
故答案为:平行四边形的对角线互相平分.
命题的逆命题是把原命题的题设和结论互换.原命题正确但逆命题不一定正确,所以并不是所有的定理都有逆定理.
12、-1
【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
【详解】
解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
=1×(﹣1)
=﹣1.
故答案为﹣1.
本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
13、12.
【解析】
因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.
【详解】
解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;
当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;
∴顶角的度数为80°或20°.
故答案为80°或20°.
本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)直线的解析式为.
【解析】
(1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;
(2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可
【详解】
(1)∵直线与轴交于点,与轴交于点,
∴,
∵,
∴,
∴,
∵,
∴,
∴;
(2)如图,作轴于点,
∵四边形是正方形,
∴,
∴,
∴,
∴,
∴,
∴,
∵,
∴设直线的解析式为,把代入,得,
∴直线的解析式为.
本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
15、﹣1≤x<2
【解析】
首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.
【详解】
解不等式①,得:x<2,
解不等式②,得:x≥﹣1,
所以不等式组的解集为﹣1≤x<2,
将不等式组的解集表示在数轴上如下:
此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
16、证明见解析
【解析】
试题分析:由CA平分∠BCD,AE⊥BC于E,AF⊥CD,可得AE=AF,再由HL判定Rt△AEB≌Rt△AFD,即可得出结论.
试题解析:∵CA平分∠BCD,AE⊥BC,AF⊥CD,∴AE=AF.
在Rt△ABE和Rt△ADF中,∵
∴△ABE≌△ADF(HL).
17、见解析.
【解析】
由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.
【详解】
证明:,,
四边形是平行四边形,
,
,
,
是等边三角形.
本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.
18、 (1)见解析;(2)当时,以为顶点的四边形是平行四边形 ;(3)时,.
【解析】
(1)根据AM=t1可得,再根据题意过点过点作交直线于点,连接、即可;
(2) 过作于,先证明四边形AMPE是平行四边形,从而得到AM=PE,在Rt△ADE中法求得DE=2,再求出PC=2-t,根据要使以为顶点的四边形是平行四边形则AM=PC,得到关于t的方程,解方程即可;
(3) 当在线段延长线上时,可得,,,再根据得到关于t的方程,解方程即可.
【详解】
(1)如备用图1、2所示;
(2)若点在线段上时,过作于,如图
∵
∴
又在平行四边形中,,即
∴四边形是平行四边形 ,
∴
由运动可知
∴ ,
在中
∴,
,
要使四边形为平行四边形,则只需 ,
即,解得,,
当时,以为顶点的四边形是平行四边形;
(3)当在线段延长线上时,假设时,如图
易知,
,,
∵,
∴,
∴,
解得,
故时,.
考查了平行四边形的动点问题,解题关键是灵活运用勾股定理、平行四边形的性质等知识,认真分析题意.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±1.
【解析】
利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2= a2±2ab+b2.
【详解】
∵100x2﹣kxy+49y2是一个完全平方式,
∴k=±1.
故答案为:±1.
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
20、
【解析】
由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.
21、
【解析】
将二次根式化简代值即可.
【详解】
解:
所以原式.
故答案为:
本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.
22、80
【解析】
根据图形找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出直线OF的解析式.
【详解】
.解:观察图形可得出:点A的坐标为(5,560),点B的坐标为(12,0),
设线段AB的解析式为y=kx+b(k≠0),
∴ ,解得:,
∴线段AB的解析式为y=﹣80x+960(5≤x≤12).
当x=6时,y=480,
∴点F的坐标为(6,480),
∴直线OF的解析式为y=80x.
所以相遇时强强的速度是80米/分钟.
故答案为80
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察图形找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
23、20
【解析】
根据完全平方公式变形后计算,可得答案.
【详解】
解:
故答案为:20
本题考查了二次根式的运算,能利用完全平方公式变形计算是解题关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2);(3)见解析
【解析】
试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;
(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
试题解析:(1)证明:连接AC,
∵∠1+∠2=60°,∠3+∠2=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=∠ADC=60°
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∴△ABC、△ACD为等边三角形
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
,
∴△ABE≌△ACF.(ASA)
∴BE=CF.
(2)解:由(1)得△ABE≌△ACF,
则S△ABE=S△ACF.
故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,
是定值.
作AH⊥BC于H点,
则BH=2,
S四边形AECF=S△ABC
=
=
=;
(3)解:由“垂线段最短”可知,
当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,
正三角形AEF的面积会最小,
又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.
由(2)得,S△CEF=S四边形AECF﹣S△AEF
=﹣=.
点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.
25、(1),点为;(2);(3)存在,点为,理由见解析
【解析】
(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;
(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;
(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.
【详解】
解:(1)把点代入直线,
即 时,
直线,当时, 得:
,点为
(2)过点作轴,垂足为,由(1)得,
∴
解得:
点为
设直线为,把点、代入,得:
解得:
直线的解析式为
(3)由已知可得,四边形为矩形,
设点的纵坐标为,则 得:
点为
轴
点的纵坐标也为
点在直线上,当时,
又
当时,矩形为正方形,所以
故点为
本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.
26、(1)证明见解析;(2)证明见解析
【解析】
(1)由矩形的性质得出∠DEB=∠BFD=90°,DE=BF,故∠DEA=∠BFC,由ASA证明△ADE≌△CBF即可得出结论;
(2)由△ADE≌△CBF可得∠DAE=∠BCF,由矩形的性质得出∠EDF=∠ABF=90°可得∠ADC=∠ABC,即可得出结论.
【详解】
(1)在矩形DFBE中,∠DEB=∠BFD=90°,DE=BF
∵∠AED+∠DEB=180°,∠CFB+∠BFD=180°
∴∠AED=∠CFB=90°
又∵∠ADE=∠CBF
∴△ADE≌△CBF
∴AE=CF
(2)∵△ADE≌△CBF
∴∠A=∠C
∵在矩形DFBE中,∠EDF=∠FBA=90°
∴∠EDF+∠ADE=∠FBA+∠CBF
即∠ADC=∠ABC
又∵∠A=∠C
∴四边形ABCD是平行四边形
本题主要考查了矩形的性质、全等三角形的判定及性质,平行四边形的判定;熟练掌握矩形的性质,平行四边形的判定是解题的关键.
题号
一
二
三
四
五
总分
得分
温度/℃
﹣20
﹣10
0
10
20
30
声速/m/s
318
324
330
336
342
348
相关试卷
这是一份河北省唐山市丰南区2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省唐山市二中学2024年数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河北省唐山市路南区数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)