河北省张家口市桥西区2024年数学九上开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,设线段AC=1.过点C作CD⊥AC,并且使CD=AC:连结AD,以点D为圆心,DC的长为半径画弧,交AD于点E;再以点A为圆心,AE的长为半径画弧,交AC于点B,则AB的长为( )
A.B.C.D.
2、(4分)在“爱我莒州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲8、7、9、8、8; 乙:7、9、6、9、9,则下列说法中错误的是( )
A.甲得分的众数是8B.乙得分的众数是9
C.甲得分的中位数是9D.乙得分的中位数是9
3、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外锻炼占20%,期中考试成绩占40%,期末考试成绩占40%。小乐的三项成绩(百分制)依次为95,90,85,则小彤这学期的体育成绩为是( )
A.85B.89C.90D.95
4、(4分)如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是( )
A.B.C.D.
5、(4分)一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是( )
A.3B.4C.6D.12
6、(4分)若等腰三角形底边长为8,腰长是方程的一个根,则这个三角形的周长是( )
A.16B.18C.16或18D.21
7、(4分)已知,如图一次函数y1=ax+b与反比例函数y2= 的图象如图示,当y1<y2时,x的取值范围是( )
A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5
8、(4分)为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是( )
A.甲B.乙C.丙D.都一样
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)既是矩形又是菱形四边形是________.
10、(4分)如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOD=120°,对角线AC=4,则BC的长为_____.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.
12、(4分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
13、(4分)如图,将 Rt△ABC 绕直角顶点 A 按顺时针方向旋转 180° 得△AB1C1,写出旋转后 BC 的对应线段_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:
(2)解方程:(1-2x)2=x2-6x+9
15、(8分)先化简,再求值:),其中.
16、(8分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).
(1)求m,n的值;
(2)求ΔABC的面积;
(3)请根据图象直接写出:当y1
17、(10分)某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.
18、(10分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF的中点,连接DG.
(1)求证:BC=DF;(2)连接BD,求BD∶DG的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.
20、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.
21、(4分)用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____
22、(4分)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).
23、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.
根据图象解答下列问题:
(1)体育场离张强家多远?张强从家到体育场用了多少时间?
(2)体育场离文具店多远?
(3)张强在文具店停留了多少时间?
(4)求张强从文具店回家过程中与的函数解析式.
25、(10分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.
(1)求y与x的函数关系式.
(2)该销售员的工资为4100元,他这个月销售了多少件产品?
(3)要使每月工资超过4500元,该月的销售量应当超过多少件?
26、(12分)如图,在△ABC中,∠C=90∘,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.
(1)求证:CD=BE;
(2)若AB=10,求BD的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理求得AD的长度,则AB=AE=AD-CD.
【详解】
解:如图,AC=1,CD= AC=,CD⊥AC,
∴由勾股定理,得
AD=,
又∵DE=DC=,
∴AB=AE=AD-CD=-=,
故选:B.
本题考查了勾股定理.根据勾股定理求得斜边AD的长度是解题的关键.
2、C
【解析】
众数是在一组数据中出现次数最多的数;将一组数据按从小到大顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数称为中位数;
【详解】
∵甲8、7、9、8、8;
∴甲的众数为8,中位数为8
∵乙:7、9、6、9、9
∴已的众数为9,中位数为9
故选C.
本题考查的是众数,中位数,熟练掌握众数,中位数是解题的关键.
3、B
【解析】
根据加权平均数的定义即可求解.
【详解】
由题意得小彤这学期的体育成绩为是20%×95+40%×90+40%×95=89,
故选B.
此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义.
4、C
【解析】
结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.
【详解】
①当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,
∴,
②当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
,
,
,
③当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
综上所述:与的函数表达式为:
.
故答案为:C.
本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.
5、C
【解析】
首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.
【详解】
310°×2÷180°+2
=720°÷180°+2
=4+2
=1
∴该正多边形的边数是1.
故选C.
此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.
6、B
【解析】
先把方程的根解出来,然后分别让两个根作为腰长,再根据三角形三边关系判断是否能组成三角形,即可得出答案.
【详解】
解:∵腰长是方程的一个根,解方程得:
∴腰长可以为4或者5;
当腰长为4时,三角形边长为:4,4,8,
∵,根据三角形三边长度关系:两边之和要大于第三边可得:4,4,8三条线段不能构成三角形,
∴舍去;
当腰长为5时,三角形边长为:5,5,8,经检验三条线段可以构成三角形;
∴三角形的三边长为:5,5,8,周长为:18.
故答案为B.
本题考查一元二次方程的解,以及三角形三边关系的验证,当涉及到等腰三角形的题目要进行分类讨论,讨论后一定不要忘记如果求得三角形的三边长,必须根据三角形三边关系再进行判断,看求得的三边长度是否能构成三角形.
7、D
【解析】
根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.
【详解】
根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.
故选D.
本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.
8、B
【解析】
根据方差的定义,方差越小数据越稳定.由此即可解答.
【详解】
∵,,,
∴S丙2>S甲2>S乙2,方差最小的为乙,
∴麦苗高度最整齐的是乙.
故选B.
本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、正方形
【解析】
根据正方形的判定定理即可得到结论.
【详解】
既是矩形又是菱形的四边形是正方形,
故答案为正方形.
本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
10、2.
【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AB,然后根据勾股定理即可求出BC.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB,
∴AC=2OA=4,
∴AB=2
∴BC=;
故答案为:2.
本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
11、1
【解析】
作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
∵∠C=90°,AC=BC=6cm,
∴△ABC为直角三角形,
∴∠A=∠B=45°,
∴△APE和△PBD为等腰直角三角形,
∴PE=AE=AP=tcm,BD=PD,
∴CE=AC﹣AE=(6﹣t)cm,
∵四边形PECD为矩形,
∴PD=EC=(6﹣t)cm,
∴BD=(6﹣t)cm,
∴QD=BD﹣BQ=(6﹣1t)cm,
在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
∵四边形QPCP′为菱形,
∴PQ=PC,
∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
∴t1=1,t1=6(舍去),
∴t的值为1.
故答案为1.
【点睛】
此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
12、
【解析】
试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。
∴在Rt△BOC中,根据勾股定理得,OB=。
∴OA=OB=。
∵点A在数轴上原点的左边,∴点A表示的数是。
13、B1C1.
【解析】
根据旋转的性质解答即可.
【详解】
∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,
∴△ABC≌△AB1C1,
∴BC=B1C1,
∴旋转后BC的对应线段是B1C1,
故答案为:B1C1.
本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)- (2)-2、
【解析】
(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程.
【详解】
(1)解:原式=3﹣15×+×
=3+
=;
(2)解:原方程可化为:
本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.
15、,.
【解析】
试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.
试题解析:原式===,
当时,原式===.
考点:分式的化简求值.
16、(1)n=1,m=2;(2)2;(3)当y1
【解析】
(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;
(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;
(3)根据点坐标,结合一次函数与不等式的关系可得出答案.
【详解】
解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2. (2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.
(3)∵C(1,1),∴当y1
此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.
17、10%.
【解析】
试题分析:一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.
试题解析:设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.
则2500(1+x)2=3025,
解得x=0.1=10%,或x=-2.1(不合题意舍去).
答:这两年投入教育经费的平均增长率为10%.
考点:一元二次方程的应用.
18、(1)详见解析;(2)
【解析】
(1)根据矩形的性质解答即可;
(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.
【详解】
证明:(1)∵四边形ABCD为矩形,
∴AD=BC,∠BAD=∠ADC=90°,
∵AF平分∠BAD,
∴∠DAF=45°,
∴AD=DF,
∴BC=DF;
(2)连接CG,BG,
∵点G为EF的中点,
∴GF=CG,
∴∠F=∠BCG=45°,
在△BCG与△DFG中,
∴△BCG≌△DFG(SAS),
∴BG=DG,∠CBG=∠FDG,
∴△BDG为等腰直角三角形,
∴BD=DG,
∴BD:DG=:1.
此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、54
【解析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.
【详解】
解:∵20m2,30m2的两个矩形是等宽的,
∴20m2,30m2的两个矩形的长度比为2:3,
∴第四块土地的面积==54m2,
故答案为:54
本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.
20、
【解析】
设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.
【详解】
解:设长为3x,宽为2x,
由题意,得:5x+20≤160,
解得:x≤28,
故行李箱宽度的最大值是28×2=56cm.
故答案为:56cm.
本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.
21、等腰三角形的底角是钝角或直角
【解析】
根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.
故答案是:等腰三角形的两底都是直角或钝角.
22、xn+1-1
【解析】
观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.
23、6+
【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
【详解】
解:作AB的垂直平分线,交AC于点E,
∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
∴tan30°==,
解得:CD=cm,
∵BC=3cm,∴BE=6cm,∴CE=3cm,
∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
二、解答题(本大题共3个小题,共30分)
24、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()
【解析】
(1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.
(2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.
(3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.
(4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.
【详解】
解:
(1)体育场离张强家,张强从家到体育场用了
(2)体育场离文具店
(3)张强在文具店停留了
(4)设张强从文具店回家过程中与的函数解析式为,
将点,代入得
,
解得,
∴()
本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.
25、 (1) y=10x+3000(x≥0,且x为整数);(2) 110件产品;(3) 超过150件.
【解析】
分析:(1).根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2).利用某营销员某月工资为4100元,可求出他销售了多少件产品;(3).根据月工资超过4500元,求不等式解集即可.
此题考查了一次函数的综合应用;关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系分别求解;一次函数及其图像是初中代数中比较重要的内容.
详解:∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;
另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,
设营销员李亮月销售产品x件,他应得的工资为y元,
∴y=10x+3000(,且x为整数);
(2)∵若该销售员的工资为4100元,
则10x+3000=4100,解之得:x=110,
∴该销售员的工资为4100元,他这个月销售了110件产品;
(3)根据题意可得:解得,
∴要使每月工资超过4500元,该月的销售量应当超过150件.
点睛:本题考查了一次函数的性质,熟记性质,会灵活运用性质是解题的关键.
26、(1)详见解析;(2)BD=.
【解析】
(1)等腰直角三角形的底角为45°,角平分线上的点到两边的距离相等,根据这些知识用线段的等量代换可求解.
(2)先求出BC的长度,再设BD=x,可表示出CD,从而可列方程求解.
【详解】
(1)证明:∵AD平分∠CAB,C=90∘,DE⊥AB
∴DC⊥AC,
∴CD=DE
∵AC=BC
∴∠B=45°
∴∠B=∠BDE
∴DE=BE
∴CD=BE;
(2)解:在△ABC中,
∵∠C=90°,AC=BC,AB=10
∴BC=5
在Rt△BDE中,设BD=x,
∵DE=BE=CD
∴BE=CD=x,
列方程为:x+x=5
解得BD=x=10−10.
本题考查角平分线的性质,等腰三角形的性质,勾股定理等知识点.以及数形结合的思想.
题号
一
二
三
四
五
总分
得分
批阅人
河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】: 这是一份河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄桥西区数学九上开学监测试题【含答案】: 这是一份2024年河北省石家庄桥西区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省张家口市桥西区2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份河北省张家口市桥西区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了某地质学家预测,若关于x的一元二次方程方程等内容,欢迎下载使用。