河南洛阳市洛龙区第一实验学校2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系( )
A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1
2、(4分) “古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是( )
A.B.C.D.
3、(4分)勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家( )
A.祖冲之B.杨辉C.刘徽D.赵爽
4、(4分)下列图形不是中心对称图形的是
A.B.C.D.
5、(4分)下列图形,可以看作中心对称图形的是( )
A.B.C.D.
6、(4分)如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )
A.8B.6C.9D.10
7、(4分)下列式子运算正确的是( )
A.B.
C.D.
8、(4分)若,则变形正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)地图上某地的面积为100cm1,比例尺是l:500,则某地的实际面积是_______m1.
10、(4分)已知函数,则x取值范围是_____.
11、(4分)计算=________________.
12、(4分)如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.
①3球以下(含3球)的人数;②4球以下(含4球)的人数; ③5球以下(含5球)的人数;④6球以下(含6球)的人数.
13、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
15、(8分)已知直线y=kx+b(k≠0)过点(1,2)
(1)填空:b= (用含k代数式表示);
(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;
(3)当1≤x≤3,函数值y总大于零,求k取值范围.
16、(8分)如图,矩形的对角线相交于点.
(1)判断四边形的形状,并进行证明;(2)若,求四边形的面积.
17、(10分)与位似,且,画出位似中心,并写出与的位似比.
18、(10分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
20、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
21、(4分)如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
22、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
23、(4分)分解因式:=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x+2 成正比例,当x=4时,y=12.
(1)写出y与x之间的函数解析式;
(2)求当y=36时x的值;
(3)判断点(-7,-10)是否是函数图象上的点.
25、(10分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.
26、(12分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后 他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时 ,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
在反比例函数的图象在二四象限,根据x1<x2<0<x3,可以确定点(x1,y1)、(x2,y2)、(x3,y3)所在象限,根据反比例函数的图象和性质,可以确定y1、y2、y3的大小关系.
【详解】
∵反比例函数的图象在二、四象限,在每个象限内y随x的增大而增大,
又∵x1<x2<0<x3,
∴点,和,在第二象限、而,在第四象限,
于是有:0<<,而<0,
因此,<<,
故选:C.
本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.
2、C
【解析】
由题意得送郎一路雨飞池,说明十从军者和送别者的函数图象在一开始的时候一样,再根据十里江亭折柳枝,说明从军者与送者离原地的距离不变,最后根据离人远影疾行去,说明从军者离原地的距离越来越远,送别者离原地的距离越来越近即可得出答案.
【详解】
∵送郎一路雨飞池,
∴十从军者和送别者的函数图象在一开始的时候一样,
∵十里江亭折柳枝,
∴从军者与送者离原地的距离不变,
∵离人远影疾行去,
∴从军者离原地的距离越来越远,送别者离原地的距离越来越近.
故选:C.
考查了函数的图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
3、D
【解析】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
【详解】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
故选D.
我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.
4、D
【解析】
根据中心对称图形的概念求解.
【详解】
A、是中心对称图形.故不能选;
B、是中心对称图形.故不能选;
C、是中心对称图形.故不能选;
D、不是中心对称图形.故可以选.
故选D
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【解析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
、不是中心对称图形,故本选项不符合题意;
、是中心对称图形,故本选项符合题意;
、不是中心对称图形,故本选项不符合题意;
、不是中心对称图形,故本选项不符合题意.
故选:.
本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.
6、A
【解析】
由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案
【详解】
∵AC的垂直平分线交AD于E,
∴AE=CE,
∵四边形ABCD是平行四边形,
∴CD=AB=3,AD=BC=5,
∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,
故选A.
此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE
7、D
【解析】
利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.
【详解】
解:A、原式=﹣,所以A选项错误;
B、与不能合并,所以B选项错误;
C、原式=,所以C选项错误;
D、原式=9﹣6 +10=19﹣6 ,所以D选项正确.
故选:D.
题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
8、D
【解析】
根据不等式的性质即可判断.
【详解】
若,
则x+2<y+2,故A错误;
<,故B错误;
x-2<y-2,故C错误;
,故D正确;
故选D.
此题主要考查不等式的性质,解题的关键是熟知不等式的性质及应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1500
【解析】
设某地的实际面积为xcm1,
则100:x=(1:500)1,
解得x=15000000cm1.
15000000cm1=1500m1.
∴某地的实际面积是1500平方米.
10、x≥1.
【解析】
试题解析:根据题意得,x-1≥0,
解得x≥1.
考点:函数自变量的取值范围.
11、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
12、①②④
【解析】
根据题意和条形统计图中的数据可以求得各个选项中对应的人数,从而可以解答本题.
【详解】
因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得:3球以下(含3球)的人数为10人,4球以下(含4球)的人数10+7=17人,6球以下(含6球)的人数35-1=1.故只有5球以下(含5球)的人数无法确定.
故答案为①②④
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.同时理解中位数的概念.
13、2a.
【解析】
可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
【详解】
∵a、b、c是△ABC三边的长
∴a+c-b>0,a+b-c>0
∴原式=|a-b+c|+|c-a-b|
=a+c-b+a+b-c
=2a.
故答案为:2a.
考查了二次根式的化简和三角形的三边关系定理.
三、解答题(本大题共5个小题,共48分)
14、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
15、(1)2﹣k;(2)k=±2;(3)当k>1或﹣1<k<1时,函数值y总大于1.
【解析】
(1)∵直线y=kx+b(k≠1)过点(1,2),
∴k+b=2,
∴b=2﹣k.
故答案为2﹣k;
(2)由(1)可得y=kx+2﹣k,
向下平移2个单位所得直线的解析式为y=kx﹣k,
令x=1,得y=﹣k,令y=1,得x=1,
∴A(1,1),B(1,﹣k),
∵C(1+k,1),
∴AC=|1+k﹣1|=|k|,
∴S△ABC=AC•|yB|=|k|•|﹣k|=k2,
∴k2=2,解得k=±2;
(3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于1.
分两种情况:
ⅰ)当k>1时,y随x增大而增大,
∴当x=1时,y有最小值,最小值为k+2﹣k=2>1,
∴当 k>1时,函数值总大于1;
ⅱ)当k<1时,y随x增大而减小,
∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,
由2k+2>1得k>﹣1,
∴﹣1<k<1.
综上,当k>1或﹣1<k<1时,函数值y总大于1.
16、(1)四边形是菱形,见解析;(2).
【解析】
(1)先证四边形是平行四边形,再证其一组邻边相等即可;
(2)求出OE的长,再根据菱形的面积公式求解.
【详解】
解:四边形是菱形
四边形是平行四边形
四边形是矩形
平行四边形为菱形
连接交于
四边形是矩形
由可知,四边形是菱形
在中,
本题考查了菱形的判定及其面积,熟练掌握菱形的判定方法及面积公式是解题的关键.
17、作图见详解,位似比为1:1
【解析】
连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.
【详解】
解:如图,点P为位似中心.
∵AB=1,A′B′=1,
∴△ABC与△A′B′C′的位似比=AB:A′B′=1:1.
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.
18、AD=2.
【解析】试题分析:先设AD=x.由△DEF为等腰直角三角形,可以得到一对边相等,一对角相等,再加上一对直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用边相等可得x+x+2=1,解之即得AD.
解:先设AD=x.
∵△DEF为等腰三角形.
∴DE=EF,∠FEB+∠DEA=90°.
又∵∠AED+∠ADE=90°.
∴∠FEB=∠EDA.
又∵四边形ABCD是矩形,
∴∠B=∠A=90°
∴△ADE≌△BEF(AAS).
∴AD=BE.
∴AD+CD=AD+AB=x+x+2=1.
解得x=2.
即AD=2.
考点:矩形的性质;全等三角形的判定与性质;等腰直角三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.
【详解】
解:∵23,32,18,x,12,它的中位数是20,
∴x=20,
平均数为:(23+32+18+20+12)÷5=1,
故答案为:1.
本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
20、110
【解析】
延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.
【详解】
如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵直角△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,
,
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
所以,矩形AOLP是正方形,
边长AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面积为10×11=110.
本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.
21、75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
22、y=2x+2
【解析】
【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.
【详解】由已知可设直线解析式是y=2x+k,
因为,直线经过点(1,4),
所以,4=2+k
所以,k=2
所以,y=2x+2
故答案为y=2x+2
【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
23、
【解析】
利用提公因式完全平方公式分解因式.
【详解】
故答案为:
利用提公因式、平方差公式、完全平方公式分解因式.
二、解答题(本大题共3个小题,共30分)
24、 (1)y=2(x+2)=2x+4;
(2)x=16;
(3)点(-7,-10)是函数图象上的点.
【解析】(1)利用待定系数法即可求出答案;
(2)把y=36代入(1)中所求的函数解析式中即可得出x的值;
(3)把x=-7代入(1)中所求的函数解析式中即可判断出答案.
解:(1)设y=k(x+2).
∵x=4,y=12,
∴6k=12.
解得k=2.
∴y=2(x+2)=2x+4.
(2)当y=36时,2x+4=36,
解得x=16.
(3)当x=-7时,y=2×(-7)+4=-10,
∴点(-7,-10)是函数图象上的点.
25、 (1) x1=,x2=;(2) x1=2,x2=−.
【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.
【详解】
(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.
本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.
26、路灯的高度是
【解析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可
【详解】
解:由题意知:
即
解得
答:路灯的高度是
本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键
题号
一
二
三
四
五
总分
得分
2024年河南省洛阳市洛龙区第一实验学校数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024年河南省洛阳市洛龙区第一实验学校数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河南省郑州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省洛阳市涧西区洛阳市数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年河南省洛阳市涧西区洛阳市数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。