河南省宝丰县2024-2025学年九上数学开学检测模拟试题【含答案】
展开这是一份河南省宝丰县2024-2025学年九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在△ABC中,AB=,BC=,AC=,则( )
A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B
2、(4分)从下面四个条件中任意选两个,能使四边形ABCD是平行四边形选法有( )
①;②;③;④
A.2种B.3种C.4种D.5种
3、(4分)如图,在点中,一次函数y=kx+2(k<0)的图象不可能经过的点是( )
A.B.C.D.
4、(4分)抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是( )
A.必然事件B.不可能事件C.确定事件D.随机事件
5、(4分)如图,▱ OABC 的顶点 O、A、C 的坐标分别是(0,0),(2,0),(0.5,1),则点 B 的坐 标是( )
A.(1,2)B.(0.5,2)C.(2.5,1)D.(2,0.5)
6、(4分)要使分式的值为零,则的取值应满足( )
A.B.C.D.
7、(4分)下列结论中,正确的是( )
A.四边相等的四边形是正方形
B.对角线相等的菱形是正方形
C.正方形两条对角线相等,但不互相垂直平分
D.矩形、菱形、正方形都具有“对角线相等”的性质
8、(4分)Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是( )
A.(2,2)B.(1,)C.(,1)D.(2,2)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:___.
10、(4分)如图,点是的对称中心, ,是边上的点,且是边上的点,且,若分别表示和的面积则.
11、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
12、(4分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.
13、(4分)如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表 睡眠时间分布情况
请根据以上信息,解答下列问题:
(1) m = , n = , a = , b = ;
(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
15、(8分)解方程:
(1)x2=14
(2)x(x﹣1)=(x﹣2)2
16、(8分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
(2)当t为何值时,四边形EHFG为菱形;
(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.
17、(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
18、(10分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,落在墙上的影高为6米,求旗杆的高度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.
20、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
21、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
22、(4分)已知,则的值等于________.
23、(4分)2x-3>- 5的解集是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1);
(2).
25、(10分)在平面直角坐标系中,已知一次函数的图像与轴交于点,与轴交于点
求两点的坐标
在给定的平面直角坐标系中画出该函数的图象;
根据图像回答:当时,的取值范围是 .
26、(12分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 ,中位数是 ;
(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题解析:∵在△ABC中,AB=,BC=,AC=,
∴
∴∠A=90°
故选A.
2、C
【解析】
根据平行四边形的五种判定方法,灵活运用平行四边形的判定定理,可作出判断.
【详解】
解:①和③根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;
①和②,③和④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
②和④根据两组对边分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;
所以能推出四边形ABCD为平行四边形的有四组
故选C.
本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.
3、D
【解析】
由条件可判断出直线所经过的象限,再进行判断即可.
【详解】
解:∵在y=kx+2(k<0)中,令x=0可得y=2,
∴一次函数图象一定经过第一、二象限,
∵k<0,
∴y随x的增大而减小,
∴一次函数不经过第三象限,
∴其图象不可能经过Q点,
故选:D.
本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.
4、D
【解析】
根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
【详解】
解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于1.显然,向上一面的点数之和为10”是随机事件.
故选:D.
本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、C
【解析】
延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.
【详解】
延长BC交y轴于点D,如图所示:
∵点A的坐标为(2,0),
∴OA=2,
∵四边形OABC是平行四边形,
∴BC=OA=2,
∵点C的坐标是(0.5,1),
∴OD=1,CD=0.5,
∴BD=BC+CD=2.5,
∴点B的坐标是(2.5,1);
故选:C.
此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.
6、B
【解析】
分式的值为零时,分子且分母,由此求得应满足的条件.
【详解】
由题意得,,
∴.
故选:B.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
7、B
【解析】
A.可判断为菱形,故本选项错误,
B.对角线相等的菱形是正方形,故本选项正确,
C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,
D.菱形的对角线不一定相等,故本选项错误,
故选B.
8、C
【解析】
过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.
【详解】
.解:如图,过点C作CE垂直x轴于点E.
∵A(2,﹣2),
∴OB=2,AB=2,
∵∠ABO=∠CBD=90°,
∴∠DBO=∠CBA=60°,
∵BO=BD,
∴∠D=DOB=60°,
DO=DB=BO=2,
∴∠BCD=30°,
CD=2BD=4,
∴CO=CD﹣OD=4﹣2=2,
∵∠COE=90°﹣∠COy=90°﹣60°=30°
∴CE=OC=1,OE=,
∴C(,1).
故选C.
本题考查坐标与图形性质,熟练运用30度角直角三角形性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接利用平方差公式分解因式得出即可.
【详解】
,
,
.
故答案为:.
此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.
10、
【解析】
根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC= ,从而得出S1与S2之间的等量关系.
【详解】
解:由题意可得
∵点O是▱ABCD的对称中心,
∴S△AOB=S△BOC= ,
故答案为:
本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.
11、或或
【解析】
由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
【详解】
解:∵∠C=90°,∠A=30°,BC=9,
∴∠B=60°,AB=2BC=18,
①当∠BQP=90°时,如图1所示:则AC∥PQ,
∴∠BPQ=30°,BP=2BQ,
∵BP=18-3t,BQ=t,
∴18-3t=2t,
解得:t=;
②当∠QPB=90°时,如图2所示:
∵∠B=60°,
∴∠BQP=30°,
∴BQ=2BP,
若0<t<6时,
则t=2(18-3t),
解得:t=,
若6<t≤9时,
则t=2(3t-18),
解得:t=;
故答案为:或或.
本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
12、y=﹣4x﹣1
【解析】
根据上加下减的法则可得出平移后的函数解析式.
【详解】
解:将直线y=﹣4x+3向下平移4个单位得到直线l,
则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.
故答案是:y=﹣4x﹣1
本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.
13、140°
【解析】
先根据多边形内角和定理:求出该多边形的内角和,再求出每一个内角的度数.
【详解】
解:该正九边形内角和=180°×(9-2)=1260°,
则每个内角的度数=.
故答案为:140°.
本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.
三、解答题(本大题共5个小题,共48分)
14、(1)7,18,17.5%,45%;(2)3;(3)440人.
【解析】
(1)根据40名学生平均每天的睡眠时间即可得出结果;
(2)由中位数的定义即可得出结论;
(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.
【详解】
(1)7≤t<8时,频数为m=7;
9≤t<10时,频数为n=18;
∴a=×100%=17.5%;b=×100%=45%;
故答案为7,18,17.5%,45%;
(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,
∴落在第3组;
故答案为3;
(3)该校学生中睡眠时间符合要求的人数为800×=440(人);
答:估计该校学生中睡眠时间符合要求的人数为440人.
本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.
15、(1)x=±7;(2)x1=2,x2=1.
【解析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)方程整理后,利用因式分解法求出解即可.
【详解】
(1)方程整理得:x2=19,
开方得:x=±7;
(2)方程整理得:x2﹣6x+8=0,
分解因式得:(x﹣2)(x﹣1)=0,
解得:x1=2,x2=1.
此题考查了解一元二次方程﹣因式分解法,以及直接开平方法,熟练掌握各种解法是解本题的关键.
16、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.
【解析】
(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.
【详解】
(1)证明:∵动点E、F同时运动且速度相等,
∴DF=BE,
∵四边形ABCD是菱形,
∴∠B=∠D,AD=BC,AB∥DC,
在△ADF与△CBE中,
∴△ADF≌△CBE,
∴∠DFA=∠BEC,
∵AB∥DC,
∴∠DFA=∠FAB,
∴∠FAB=∠BEC,
∴AF∥CE;
(2)过D作DM⊥AB于M,连接GH,EF,
∴DF=BE=t,
∵AF∥CE,AB∥CD,
∴四边形AECF是平行四边形,
∵G、H是AF、CE的中点,
∴GH∥AB,
∵四边形EGFH是菱形,
∴GH⊥EF,
∴EF⊥AB,∠FEM=90°,
∵DM⊥AB,
∴DM∥EF,
∴四边形DMEF是矩形,
∴ME=DF=t,
∵AD=4,∠DAB=60°,DM⊥AB,
∴
∴BE=4﹣2﹣t=t,
∴t=1,
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,
∵四边形EHFG为矩形,
∴EF=GH,
∴EF2=GH2,
即解得t=0,0<t<4,
∴与原题设矛盾,
∴不存在某个时刻t,使四边形EHFG为矩形.
属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.
17、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
18、20米.
【解析】
过C作CE⊥AB于E,首先证明四边形CDBE为矩形,可得BD=CE=21,CD=BE=2,设AE=x,则=,求出x即可解决问题.
【详解】
如图,过C作CE⊥AB于E.
∵CD⊥BD,AB⊥BD, ∴∠EBD=∠CDB=∠CEB=90°,∴四边形CDBE为矩形,
∴BD=CE=21 ,CD=BE=6 ,设AE=x , 则=,解得:x=1.
故旗杆高AB=AE+BE=1+6=20 (米).
答:旗杆的高度为20米.
本题考查了相似三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用物长:影长=定值,构建方程解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.
【详解】
解:因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为3.
本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.
20、<
【解析】
联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
【详解】
根据题意联立方程组得,
解得,,
画函数图象得,
所以,当,则<.
故答案为:<.
本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
21、-1
【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
【详解】
解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
=1×(﹣1)
=﹣1.
故答案为﹣1.
本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
22、3
【解析】
将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.
【详解】
方法一:
∵
∴
方法二:
故答案为3.
本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.
23、x>-1.
【解析】
先移项,再合并同类项,化系数为1即可.
【详解】
移项得,2x>-5+3,
合并同类项得,2x>-2,
化系数为1得,x>-1.
故答案为:x>-1.
本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2) 3.
【解析】
根据二次根式的运算法则依次计算即可
【详解】
(1)解:原式=-=
(2)解:原式=+=3
熟练掌握二次根式的计算是解决本题的关键,难度不大
25、(1);(1)见解析;(3)
【解析】
(1)分别令y=0,x=0求解即可;
(1)根据两点确定一条直线过点A和点B作一条直线即为函数的图象;
(3)结合图象可知y>0时x的取值范围即为函数图象在x轴上方部分对应的自变量的取值范围.
【详解】
解:(1)令y=0,则x=1,
令x=0,则y=1,
所以点A的坐标为(1,0),
点B的坐标为(0,1);
(1)如图:
(3)当y>0时,x的取值范围是x<1
故答案为:x<1.
本题考查了一次函数图象与坐标轴的交点问题,一次函数与一元一次不等式,画出一次函数的图象,数形结合是解题的关键.
26、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学生有187人.
【解析】
分析:(1)由题意可知,捐款11元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款1、11、20、21元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
详解:(1)本次抽查的学生有:14÷28%=10(人),则捐款10元的有10﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为:10;
(2)由条形图可知,捐款10元人数最多,故众数是10;
将这组数据按照从小到大的顺序排列,中间两个数据分别是10,11,所以中位数是(10+11)÷2=12.1.
故答案为:10,12.1;
(3)捐款20元及以上(含20元)的学生有:810×=187(人).
点睛:本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
组别
睡眠时间分组
人数(频数)
1
7≤t<8
m
2
8≤t<9
11
3
9≤t<10
n
4
10≤t<11
4
相关试卷
这是一份2024年河南省平顶山宝丰县联考九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省商丘市名校九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。