河南省鹤壁市淇县2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】
展开这是一份河南省鹤壁市淇县2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为0,则x的值等于
A.0B.3C.D.
2、(4分)如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为( )
A.2B.4C.6D.2
3、(4分)以下列各组数作为三角形的边长,其中不能构成直角三角形的是( )
A.1,,B.3,5,4
C.1,1,2D.6,8,10
4、(4分)一次函数与,在同一平面直角坐标系中的图象是( )
A.B.C.D.
5、(4分)在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是( )
A.130°B.120°C.100°D.90°
6、(4分)某工厂计划用两年时间使产值增加到目前的4倍,并且使第二年增长的百分数是第一年增长百分数的2倍,设第一年增长的百分数为x,则可列方程得( )
A.(1+x)2=4B.x(1+2x+4x)=4
C.2x(1+x)=4D.(1+x)(1+2x)=4
7、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A.5B.25C.D.5或
8、(4分)小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有( )个
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)定义运算ab=a2﹣2ab,下面给出了关于这种运算的几个结论:
①25=﹣16;
②是无理数;
③方程xy=0不是二元一次方程:
④不等式组的解集是﹣<x<﹣.
其中正确的是______(填写所有正确结论的序号)
10、(4分)如图,在菱形ABCD中,已知DE⊥AB,AE:AD=3:5,BE=2,则菱形ABCD的面积是_______.
11、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.
12、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
13、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)
三、解答题(本大题共5个小题,共48分)
14、(12分)化简求值:÷•,其中x=-2
15、(8分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.
16、(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
17、(10分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
18、(10分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.
(1)求证:∠ADG=∠DCF;
(2)联结HO,试证明HO平分∠CHG.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.
20、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.
21、(4分)2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是 .
22、(4分)菱形的两条对角线长分别为cm和cm,则该菱形的面积__________.
23、(4分)两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读例题,解答下题.
范例:解方程: x2 + ∣x +1∣﹣1= 0
解:(1)当 x+1 ≥ 0,即 x ≥ ﹣1时,
x2 + x +1﹣1= 0
x2 + x = 0
解得 x 1 = 0 ,x2 =﹣1
(2)当 x+1 < 0,即 x < ﹣1时,
x2 ﹣ ( x +1)﹣1= 0
x2﹣x ﹣2= 0
解得x 1 =﹣1 ,x2 = 2
∵ x < ﹣1,∴ x 1 =﹣1,x2 = 2 都舍去.
综上所述,原方程的解是x1 = 0,x2 =﹣1
依照上例解法,解方程:x2﹣2∣x-2∣-4 = 0
25、(10分)(1)提出问题:如图1,在正方形中,点E,H分别在BC,AB上,若于点O,求证;;
(2)类比探究:如图2,在正方形中,点B,E,G,F分别在AB,BC,CD,DA上,若于点O,探究线段EF与HG的数量关系,并说明理由;
(3)综合运用:在(2)问条件下,,如图3所示,已知,,求图中阴影部分的面积。
26、(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为 A(-3,0),与y轴交点为B,且与正比例函数的图象的交于点 C(m,4).
(1)求m的值及一次函数 y=kx+b的表达式;
(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
【详解】
分式的值为0,
,,
解得:,
故选C.
本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.
2、D
【解析】
由条件可知BD∥AE,则可知当DE⊥BC时,DE有最小值,可证得四边ACDE为矩形,可求得答案.
【详解】
∵四边形ADBE为平行四边形,
∴AE∥BC,
∴当DE⊥BC时,DE有最小值,如图,
∵∠ACB=90°,
∴四边形ACDE为矩形,
∴DE=AC,
在Rt△ABC中,由勾股定理可求得AC==2,
∴DE的最小值为2,
故选:D.
本题主要考查平行四边形的性质和矩形的判定和性质,确定出DE取最小值时的位置是解题的关键.
3、C
【解析】
根据勾股定理的逆定理对四个答案进行逐一判断即可,
【详解】
解:A、∵,∴能构成直角三角形;
B.. ∵,∴能构成直角三角形;
C..:∵,∴不能构成直角三角形;
D.:∵,∴能构成直角三角形.
故选:C.
本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.
4、C
【解析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.
【详解】
当ab>0,a,b同号,y=abx经过一、三象限,
同正时,y=ax+b过一、三、二象限;
同负时过二、四、三象限,
当ab<0时,a,b异号,y=abx经过二、四象限
a<0,b>0时,y=ax+b过一、三、四象限;
a>0,b<0时,y=ax+b过一、二、四象限.
故选C.
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
5、C
【解析】
分析:直接利用平行四边形的对角相等,邻角互补即可得出答案.
详解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°.
∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.
故选C.
点睛:本题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题的关键.
6、D
【解析】
设第一年增长的百分数为x,则第二年增长的百分数为2x,根据“计划用两年时间使产值增加到目前的1倍”列出方程即可.
【详解】
解:设第一年增长的百分数为x,则第二年增长的百分数为2x,
根据题意,得(1+x)(1+2x)=1.
故选:D.
此题主要考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
7、D
【解析】
分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.
【详解】
解:
分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是;
②3和4都是直角边,由勾股定理得:第三边长是=5;
即第三边长是5或,
故选D.
本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.
8、C
【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.
【详解】
由图可得,
AC的距离为120米,故①正确;
乙的速度为:(60+120)÷3=60米/分,故②正确;
a的值为:60÷60=1,故③错误;
令[60+(120÷3)t]-60t≥10,得t≤,
即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;
故选C.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先认真审题.理解新运算,根据新运算展开,求出后再判断即可.利用题中的新定义计算即可得到结果.
【详解】
①25=22-2×2×5=-16,故①正确;
②21=22-2×2×1=0,所以是有理数,故②错误;
③xy=x2-2xy=0,是二元二次方程,不是二元一次方程,故③正确;
④不等式组变形为,解得<x<,故④正确.
故的答案为:①③④
本题考查了整式的混合运算的应用,涉及了开方运算,方程的判断,不等式组的解集等,解此题的关键是能理解新运算的意义,题目比较好,难度适中.
10、20
【解析】
先由线段比求出AE,AB,AD,再由勾股定理求出DE,根据面积公式再求结果.
【详解】
因为,四边形ABCD是菱形,
所以,AD=AB,
因为,AE:AD=3:5,
所以,AE:AB=3:5,
所以,AE:BE=3:2,
因为,BE=2,
所以,AE=3,AB=CD=5,
所以,DE= ,
所以,菱形ABCD的面积是AB∙DE=5×4=20
故答案为20
本题考核知识点:菱形性质.解题关键点:由勾股定理求出高.
11、60°或300°
【解析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
【详解】
解:如图,连接,
∵四边形ABCD是矩形,
∴CD=AB,∠DAB=∠ADC=90°,
∵DG=AG,
∴∠ADG=∠DAG,
∴∠CDG=∠GAB,且CD=AB,DG=AG,
∴△DCG≌△ABG(SAS),
∴CG=BG,
∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
∴BC=BG,∠CBG=α,
∴BC=BG=CG,
∴△BCG是等边三角形,
∴∠CBG=α=60°,
同理当G点在AD的左侧时,
△BCG仍是等边三角形,
Α=300°
故答案为60°或300°.
本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.
12、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
13、AC=BD 答案不唯一
【解析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.
【详解】
解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD, ∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).
本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
把除法转化成乘法,再进行乘法运算求得结果,最后把x的值代入化简结果求值即可.
【详解】
֥
=
=;
当x=时,原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
15、(1)证明见解析;(2)DF=;(3)PF=.
【解析】
试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.
试题解析:(1)、∵矩形ABCD ∴AD=BC,AB=CD,AB∥CD ∴∠ACD=∠CAB
∵△AEC由△ABC翻折得到 ∴AB="AE,BC=EC," ∠CAE=∠CAB ∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中∴△DEC≌△EDA(SSS);
(2)、如图1,∵∠ACD=∠CAE, ∴AF=CF, 设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2, 即32+x2=(4﹣x)2, 解得;x=, 即DF=.
(3)、四边形APCF为菱形 设AC、FP相较于点O ∵FP⊥AC ∴∠AOF=∠AOP
又∵∠CAE=∠CAB, ∴∠APF=∠AFP ∴AF=AP ∴FC=AP
又∵AB∥CD ∴四边形APCF是平行四边形 又∵FP⊥AC ∴四边形APCF为菱形 PF=
考点:(1)、折叠图形的性质;(2)、菱形的性质;(3)、三角形全等;(4)、勾股定理.
16、10cm
【解析】
先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.
【详解】
解:在Rt△ABC中,∠C=90°,∠A=∠30°,
∴∠ABC=60°.
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=30°.
∴∠ABD=∠BAD,
∴AD=DB,
在Rt△CBD中,CD=5cm,∠CBD=30°,
∴BD=10cm.
由勾股定理得,BC=5,
∴AB=2BC=10cm.
本题利用了角平分线定义、直角三角形中30°的角所对的直角边等于斜边的一半、勾股定理等知识.
17、 (1)x+1;(2)-2.
【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
【详解】
(1)原式=
=x+1;
(2)解不等式“”得,
∴其负整数解是-3、-2、-1.
∴当时,原式=-3+1=-2
分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
18、 (1)证明见解析;(2)证明见解析.
【解析】
(1)根据题意可得△DFC≌△AFB,△AGB≌△ADG,可得∠ADG=∠DCF
(2)由题意可证CF⊥DG,由∠CHD=∠COD=90°,则D,F,O,C四点共圆,可得∠CDO=∠CHO=45°,可证OH平分∠CHG.
【详解】
(1)∵四边形ABCD是正方形
∴AB=AD=CD=BC,∠CDA=∠DAB=90°,∠DAC=∠CAB=45°,AC⊥BD
∵DC=AB,DF=AE,∠CDA=∠DAB=90°
∴△DFC≌△AEB
∴∠ABE=∠DCF
∵AG=AG,AB=AD,∠DAC=∠CAB=45°
∴△ADG≌△ABG
∴∠ADG=∠ABE
∴∠DCF=∠ADG
(2)∵∠DCF=∠ADG,且∠ADG+∠CDG=90°
∴∠DCF+∠CDG=90°
∴∠CHD=∠CHG=90°
∵∠CHD=∠COD
∴C,D,H,O四点共圆
∴∠CHO=∠CDO=45°
∴∠GHO=∠CHO=45°
∴HO平分∠CHG
本题考查了正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、60°
【解析】
根据平行四边形的性质得出,推出,根据,求出即可.
【详解】
四边形是平行四边形,
,
,
,
.
故答案为:.
本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.
20、y=2x+1
【解析】
试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.
解:由图象可知,点(0,0)、(2,4)在直线OA上,
∴向上平移1个单位得到的点是(0,1)(2,5),
那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,
则b=1,2k+b=5
解得:k=2.
∴y=2x+1.
故答案为:y=2x+1.
点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.
21、.
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.
解:画树状图得:
∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,
∴恰好2名女生得到电影票的概率是:=.
故答案为:.
22、
【解析】
根据菱形的面积等于两对角线乘积的一半即可求得其面积.
【详解】
由已知得,菱形面积=.
故答案为: .
此题考查菱形的性质,解题关键在于掌握运算公式.
23、64或
【解析】
根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.
【详解】
解:∵两个相似三角形的周长分别为8和6,
∴两个相似三角形的周长之比为4:3,
∴两个相似三角形的相似比是4:3,
∴两个相似三角形的面积比是16:9,
又一个三角形的面积为36,
设另一个的面积为S,则16:9=S:36或16:9=36:S,
∴S=64或,
故答案为:64或.
本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
二、解答题(本大题共3个小题,共30分)
24、 (1) x 1 = 0 , x2 = 2;(2)x1 = 2 ,x2 =﹣4.
【解析】
根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.
【详解】
(1)当 x﹣2 ≥ 0,即 x ≥ 2时,
x2 ﹣2(x﹣2)﹣4= 0
x2 -2x = 0
解得x 1 = 0,x2 = 2
∵ x ≥ 2,∴x 1 = 0 舍去
(2)当 x﹣2 < 0,即 x < 2时,
x2 + 2(x﹣2)﹣4= 0
x2+ 2x﹣8= 0
解得 x 1 =﹣4 ,x2 = 2
∵ x < 2,∴x2 = 2 舍去.
综上所述,原方程的解是 x1 = 2 ,x2 =﹣4.
从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.
25、(1)见解析;(2)EF=HG,理由见解析;(3).
【解析】
(1)根据正方形的性质和已知条件可得:AB= DA,∠ABE=∠DAH=∠AOD =90°,根据同角的余角相等得出∠BAE=∠ADH,然后利用ASA即可证出△ABE≌△DAH,从而得出;
(2)过点D作DN∥GH交AB于N,过点A作AM∥FE交BC于M,根据(1)中结论,即可得出AM=DN,然后根据平行四边形的判定证出:四边形AMEF和四边形DNHG都是平行四边形,根据平行四边形的性质证出EF=AM,HG=DN,从而证出EF=HG;
(3)过点F作FP⊥BC于P,根据平行可证:△OFH∽OEG,∠FHO=∠EGO,列出比例式可得:,然后根据相似三角形的判定,证出△AHF∽△CGE,列出比例式,即可求出AF,然后根据矩形的判定可得四边形ABPF为矩形,再根据矩形的性质可得:BP=AF=1,PF=AB=4,利用勾股定理即可求出FE,从而算出FO、OE、HO和OG,最后根据三角形的面积公式计算面积即可.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AB= DA,∠ABE=∠DAH=∠AOD =90°
∴∠BAE+∠EAD=90°∠EAD+∠ADH=90°
∴∠BAE=∠ADH
在△ABE和△DAH中
∴△ABE≌△DAH
∴;
(2)EF=HG,理由如下
过点D作DN∥GH交AB于N,过点A作AM∥FE交BC于M
∵,
∴AM⊥DN,
由(1)中结论可得:AM=DN
∵四边形ABCD是正方形,
∴AD∥BC,AB∥DC
∴四边形AMEF和四边形DNHG都是平行四边形
∴EF=AM,HG=DN
∴EF=HG;
(3)过点F作FP⊥BC于P
∵四边形ABCD是正方形,
∴AB=BC=,∠A=∠B=∠C=90°,AB∥CD
∴∠AHG=∠CGH
∵
∴△OFH∽OEG,∠FHO=∠EGO
∴,∠AHG-∠FHO=∠CGH-∠EGO
∴FO=,HO=,∠AHF=∠CGE
∴△AHF∽△CGE
∴
∴AF=
∵∠A=∠B=∠FPB=90°
∴四边形ABPF为矩形
∴BP=AF=1,PF=AB=4
∴PE=BE-BP=1
根据勾股定理可得:FE=
∴GH=FE=
∴FO=,EO=FE-FO=,HO==,OG=GH-HO=
∴S阴影=.
此题考查的是正方形的性质、全等三角形的判定及性质、平行四边形的判定及性质、相似三角形的判定及性质和勾股定理,掌握正方形的性质定理、全等三角形的判定定理及性质定理、平行四边形的判定定理及性质定理、相似三角形的判定定理及性质定理和用勾股定理解直角三角形是解决此题的关键.
26、(1)m的值为3,一次函数的表达式为
(2) 点P的坐标为(0, 6)、(0,-2)
【解析】
(1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值进而得到一次函数解析式.
(2)利用△BPC的面积为6,即可得出点P的坐标.
解:(1)∵点C(m,4)在正比例函数的图象上,
∴·m,即点C坐标为(3,4)
∵一次函数经过A(-3,0)、点C(3,4)
∴解得:
∴一次函数的表达式为
(2)点P的坐标为(0, 6)、(0,-2)
“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省鹤壁市名校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省鹤壁市、淇县数学九年级第一学期开学综合测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。