河南省平顶山市舞钢市2024年九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份河南省平顶山市舞钢市2024年九年级数学第一学期开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )
A.平均数B.众数C.中位数D.方差
2、(4分)百货商场试销一批新款衬衫,一周内销售情况如表所示,商场经理想要了解哪种型号最畅销,那么他最关注的统计量是( )
A.平均数B.中位数C.众数D.方差
3、(4分)下列曲线中能表示y是x的函数的为( )
A.B.C.D.
4、(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:S2甲=1.4,S2乙=18.8,S2丙=2.5,则苗高比较整齐的是( )
A.甲种B.乙种C.丙种D.无法确定
5、(4分)矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=( )
A.B.C.D.
6、(4分)如图,在△ABC中,DE∥BC,若=,则的值为( )
A.B.C.D.
7、(4分)若关于的分式方程有增根,则的值是( ).
A.B.
C.D.或
8、(4分)某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的方程会产生增根,则__________.
10、(4分)如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.
11、(4分)如果最简二次根式与是同类二次根式,那么a=________.
12、(4分)已知函数,则自变量x的取值范围是___________________.
13、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.
(1)求证:四边形ADCE是平行四边形;
(2)在△ABC中,若AC=BC,则四边形ADCE是 ;(只写结论,不需证明)
(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
15、(8分)已知关于的一次函数,求满足下列条件的m的取值范围:
(1)函数值y 随x的增大而增大;
(2)函数图象与y 轴的负半轴相交;
(3)函数的图象过原点.
16、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
17、(10分)如图,直线与轴相交于点,与轴相交于点,且,.
(1)求直线的解析式;
(2)若在直线上有一点,使的面积为4,求点的坐标.
18、(10分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)扇形统计图中D所在扇形的圆心角为 ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
20、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
21、(4分)计算.
22、(4分)已知,则的值是_____________.
23、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.
(1)求证:.
(2)求证:.
(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.
25、(10分)已知为原点,点及在第一象限的动点,且,设的面积为.
(1)求关于的函数解析式;
(2)求的取值范围;
(3)当时,求点坐标;
(4)画出函数的图象.
26、(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.
【详解】
原数据的3,4,4,5的平均数为,
原数据的3,4,4,5的中位数为4,
原数据的3,4,4,5的众数为4,
原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;
新数据3,4,4,4,5的平均数为,
新数据3,4,4,4,5的中位数为4,
新数据3,4,4,4,5的众数为4,
新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;
∴添加一个数据4,方差发生变化,
故选D.
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
2、C
【解析】
分析:商场经理要了解哪些型号最畅销,即所卖出的量最大,一组数据中出现次数最多的数字是众数,所以商场经理注的统计量为众数.
详解:因为商场经理要了解哪种型号最畅销,即哪种型号卖出最多,也即哪个型号出现的次数最多,这个用众数表示.故选C.
点睛:本题主要考查数据集中趋势中的平均数、众数、中位数在实际问题中的正确应用,理解平均数、众数、中位数的意义是解题关键.
3、D
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断.
【详解】
A、B、C选项,一个x的值对应有两个y值,故不能表示y是x的函数,错误,
D选项,x的每一个值,y都有唯一确定的值与它对应,正确,
故选D.
本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
4、A
【解析】
根据方差反映了数据的波动状况,即可确定答案.
【详解】
解:观察数据可知甲小麦苗的方差小,故甲小麦长势比较整齐.故选A.
本题解题的关键是灵活应用方差的意义,这需要平常学习时,关注基础知识.
5、D
【解析】
过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.
【详解】
解:如图,过作,交于,交于,则,
四边形是矩形,
,,,
,,
平分,
,
,
,
,
是等腰直角三角形,
,
点是的中点,
,为的中位线,
,,
;
故选:.
本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.
6、D
【解析】
利用相似三角形的面积比等于相似比的平方解答.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:D.
本题考查了相似三角形的面积比等于相似比的平方这一知识点,熟知这条知识点是解题的关键.
7、A
【解析】
方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.
【详解】
方程两边都乘以(x−3)得,
2−x−m=2(x−3),
∵分式方程有增根,
∴x−3=0,
解得x=3,
∴2−3−m=2(3−3),
解得m=−1.
故选A.
8、B
【解析】
根据利润=售价-进价,列出出不等式,求解即可.
【详解】
设成本为a元,由题意可得:
则
去括号得:
整理得:
故.
故选B.
考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.
【详解】
方程两边都乘(x−2),得
2x−m=3(x−2),
∵原方程有增根,
∴最简公分母x−2=0,即增根为x=2,
把x=2代入整式方程,得m=4.
故答案为:4.
此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.
10、
【解析】
把点A(﹣3,4)代入y=﹣3x+b求出点B的坐标,然后得到OB=5,利用A的坐标即可求出△AOB的面积.
【详解】
解: ∵点A(﹣3,4)在一次函数y=﹣3x+b的图象上,
∴9+b=4,
∴b=-5,
∵一次函数图象与y轴的交点的纵坐标就是一次函数的常数项上的数,
∴点B的坐标为:(0,-5),
∴OB=5,而A(﹣3,4),
S△AOB= .
故答案为: .
本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.
11、1
【解析】
根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.
【详解】
∵最简二次根式与是同类二次根式
∴1+a=4a-2
解得:a=1
故答案为:1.
本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.
12、
【解析】
分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
详解:由题意可得
解得x≥-2且x≠3.
故答案为:x≥-2且x≠3.
点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
13、-1
【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
【详解】
解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
=1×(﹣1)
=﹣1.
故答案为﹣1.
本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)矩形;(3)证明见解析.
【解析】
(1)证明是平行四边形的方法有很多,此题用一组对边平行且相等较为简单.
(2)根据矩形的判定解答即可.
(3)根据正方形的判定解答即可.
【详解】
证明:(1)∵四边形BCED是平行四边形,
∴BD∥CE,BD=CE;
∵D是AB的中点,
∴AD=BD,
∴AD=CE;
又∵BD∥CE,
∴四边形ADCE是平行四边形.
(2)在△ABC中,若AC=BC,则四边形ADCE是矩形,
故答案为矩形;
(3)∵AC⊥BC,
∴∠ACB=90°;
∵在Rt△ABC中,D是AB的中点,
∴CD=AD=AB;
∵在△ABC中,AC=BC,D是AB的中点,
∴CD⊥AB,
∴∠ADC=90°;
∴平行四边形ADCE是正方形.
此题考查正方形的判定,能够运用已学知识证明四边形是平行四边形,另外要熟练掌握正方形的性质及判定.
15、(1),(2),(3)
【解析】
【分析】根据一次函数的性质,结合条件列出不等式或等式求出m的取值范围.
【详解】解:(1)若函数值y 随x的增大而增大,则
1-2m>0,所以,;
(2)若函数图象与y 轴的负半轴相交,则
m-1
相关试卷
这是一份河南省平顶山市汝州市2024年数学九上开学达标测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省平顶山市2025届九年级数学第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届河南省舞钢市数学九年级第一学期开学综合测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。