河南省商丘梁园区六校联考2024年数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列条件中能构成直角三角形的是( ).
A.2、3、4B.3、4、5C.4、5、6D.5、6、7
2、(4分)如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长( )
A.不变B.逐渐变大C.逐渐变小D.先变小后变大
3、(4分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是( )
A.4B.5C.6D.10
4、(4分)观察图中的函数图象,则关于的不等式的解集为( )
A.B.C.D.
5、(4分)下列x的值中,是不等式x+1>5的解的是( )
A.﹣2B.0C.4D.6
6、(4分)如果是二次根式,那么x应满足的条件是( )
A.x≠2的实数B.x<2的实数
C.x>2的实数D.x>0且x≠2的实数
7、(4分)下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
8、(4分)只用一种多边形不能镶嵌整个平面的是( )
A.正三角形B.正四边形C.正五边形D.正六边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
10、(4分)如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为_____.
11、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
12、(4分)某校对1200名学生的身高进行了测量,身高在1.58~1.63(单位:)这一个小组的频率为0.25,则该组的人数是________.
13、(4分)如图所示的是用大小相同(黑白两种颜色)的正方形砖铺成的地板,一宝物藏在某一块正方形砖下面,宝物在白色区域的概率是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直线l:y=﹣x+b与x轴,y轴的交点分别为A,B,直线l1:y=x+1与y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为1.
(1)求实数b的值和点A的坐标;
(1)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
15、(8分)已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=BC=5,AB=6,求四边形AMCN的面积.
16、(8分)用适当的方法解方程:
(1) (2)
17、(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)谁先出发早多长时间谁先到达B地早多长时间?
(2)两人在途中的速度分别是多少?
(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
18、(10分)如图,直线与x轴相交于点A,与直线相交于点P.
(1)求点P的坐标.
(2)请判断△OPA的形状并说明理由.
(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求S与t之间的函数关系式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.
20、(4分)若,则关于函数的结论:①y随x的增大而增大;②y随x的增大而减小;③y恒为正值;④y恒为负值.正确的是________.(直接写出正确结论的序号)
21、(4分)一次函数不经过第_________象限;
22、(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.
23、(4分)一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?
25、(10分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.
26、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理逆定理进行计算判断即可.
【详解】
A.,故不能构成直角三角形;
B.,故能构成直角三角形;
C.,故不能构成直角三角形;
D.,故不能构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.
2、A
【解析】
根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.
【详解】
解:设点的坐标为,,
则,,
,
故选:.
本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.
3、B
【解析】
∵AD平分∠CAB,
∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.
∵BM+MN=B′M+MN,
∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,
∵AD垂直平分BB′,
∴AB′=AB=1 ,
∵∠B′AN′=41°,
∴△AB′N′是等腰直角三角形,
∴B′N′=1
∴BM+MN的最小值为1.
故选B.
本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.
4、D
【解析】
根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.
【详解】
解:由图象可知,两图象的交点坐标是(1,2),
当x>1时,ax>bx+c,
∴关于x的不等式ax-bx>c的解集为x>1.
故选:D.
本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.
5、D
【解析】
根据不等式解集的定义即可得出结论.
【详解】
∵不等式x+1>5的解集是所有大于4的数,
∴6是不等式的解.
故选D.
本题考查的是不等式的解集,熟知使不等式成立的未知数的值叫做不等式的解是解答此题的关键.
6、C
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于2,分母不等于2,列不等式组求解.
【详解】
根据题意得:,
解得:x>1.
故选C.
主要考查了二次根式的意义和性质.概念:式子(a≥2)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于2.
7、A
【解析】
试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;
故选:A.
8、C
【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.
【详解】
解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;
B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;
D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.
故选:C.
本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
【详解】
∵反比例函数y=−2x中,k=−2<0,
∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。
∵−2<−1<0,12>0,
∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,
∴y3
10、(3,2)
【解析】
对称点的纵坐标与点P的纵坐标相等,为2,
对称点与直线x=1的距离和P与直线x=1的距离相等,所以对称点的横坐标为3,
所以对称点的坐标为(3,2).
点睛:掌握轴对称图形的性质.
11、1
【解析】
试题解析:∵菱形ABCD的对角线AC=6,BD=8,
∴菱形的面积S=AC•BD=×8×6=1.
考点:菱形的性质.
12、1.
【解析】
试题解析:该组的人数是:1222×2.25=1(人).
考点:频数与频率.
13、.
【解析】
解:根据图示可得:总的正方形有9个,白色的正方形有5个,
则宝物在白色区域的概率是:.
故答案为
三、解答题(本大题共5个小题,共48分)
14、(3)b=2,A(6,0);(3) a的值为5或﹣3
【解析】
(3)将点E的横坐标为3代入y=x+3求出点E的坐标,再代入y=﹣x+b中可求出b的值,然后令﹣x+b=0解之即可得出A点坐标;
(3)由题可知,MN//OB,只需再求出当MN=OB时的a值,即可得出答案.
【详解】
(3)∵点E在直线l3上,且点E的横坐标为3,
∴点E的坐标为(3,3),
∵点E在直线l上,
∴,
解得:b=2,
∴直线l的解析式为,
当y=0时,有,
解得:x=6,
∴点A的坐标为(6,0);
(3)如图所示,
当x=a时,,,
∴,
当x=0时,yB=2,
∴BO=2.
∵BO∥MN,
∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,
此时|3﹣a |=2,
解得:a=5或a=﹣3.
∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或﹣3.
本题是一次函数综合题.考查了一次函数图象点的坐标特征、待定系数法、平行四边形的判定等知识.用含a的式子表示出MN的长是解题的关键.
15、(1)见解析;(2)12.
【解析】
(1)由题意可得AB∥CD,AB=CD,又由M,N分别是AB和CD的中点可得AM=∥CN,即可得结论;
(2)根据等腰三角形的性质可得CM⊥AB,AM=3,根据勾股定理可得CM=4,则可求面积.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵M,N分别为AB和CD的中点,
∴AM=AB,CN=CD,
∴AM=CN,且AB∥CD,
∴四边形AMCN是平行四边形;
(2)∵AC=BC=5,AB=6,M是AB中点,
∴AM=MB=3,CM⊥AM,
∴CM=,
∵四边形AMCN是平行四边形,且CM⊥SM,
∴AMCN是矩形,
∴S四边形AMCN=12.
本题考查了平行四边形的性质和判定,等腰三角形的性质,关键是熟练运用这些性质解决问题.
16、(1) (2)
【解析】
(1)利用公式法,先算出根的判别式,再根据公式解得两根即可;
(2)利用因式分解法将等号左边进行因式分解,即可解出方程.
【详解】
解:(1)由题可得:,
所以,
所以
整理可得,;
(2)
提公因式可得:
化简得:
解得:,;
故答案为:(1),(2),.
本题考查一元二次方程的解法,在解方程时要先观察方程是否可以用因式分解法去解,如果可以的话优先考虑因式分解法,如果不可以的话可以利用公式法,利用公式法时注意先算根的判别式,并且注意符号问题.
17、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.
【解析】
(1)结合图象,依据点的坐标代表的意思,即可得出结论;
(2)由速度=路程÷时间,即可得出结论;
(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.
【详解】
解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;
(2)甲的速度:80÷8=10km/h,
乙的速度:80÷(5-3)=40km/h.
(3)设y甲=kx,由图知:8k=80,k=10
∴y甲=10x;
设y乙=mx+n,由图知:
解得
∴y乙=40x﹣1
答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:
y甲=10x,y乙=40x﹣1.
本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.
18、(1);(2)△POA是等边三角形,理由见解析;(3)当0<t≤4时,,当4<t<8时,
【解析】
(1)将两直线的解析式联立组成方程组,解得x、y的值即为两直线的交点坐标的横纵坐标;
(2)求得直线AP与x轴的交点坐标(4,0),利用OP=4PA=4得到OA=OP=PA从而判定△POA是等边三角形;
(3)分别求得OF和EF的值,利用三角形的面积计算方法表示出三角形的面积即可.
【详解】
解:(1)解方程组,
解得:.
∴点P的坐标为:;
(2)当y=0时,x=4,
∴点A的坐标为(4,0).
∵,
∴OA=OP=PA,
∴△POA是等边三角形;
(3)①当0<t≤4时,如图,在Rt△EOF中,
∵∠EOF=60°,OE=t,
∴EF=,OF=,
∴.
当4<t<8时,如图,设EB与OP相交于点C,
∵CE=PE=t-4,AE=8-t,
∴AF=4-,EF=,
∴OF=OA-AF=4-(4-)=,
∴
=;
综合上述,可得:当0<t≤4时,;当4<t<8时,.
本题主要考查了一次函数的综合知识,解题的关键是正确的利用一次函数的性质求与坐标轴的交点坐标并转化为线段的长.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.
【详解】
解:解不等式组 得:
由有且仅有三个整数解即:3,2,1.
则:
解得:
本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.
20、①③
【解析】
根据题意和正比例函数的性质可以判各个小题中的结论是否正确,本题得以解决.
【详解】
解:,函数,y随x的增大而增大,故①正确,②错误;
当时,,故③正确,④错误.
故答案为:①③.
本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.
21、三
【解析】
根据一次函数的图像与性质即可得出答案.
【详解】
∵一次函数解析式为:y=-x+1
其中k=-1<0,b=1>0
∴函数图像经过一、二、四象限,不经过第三象限
故答案为:三.
本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.
22、22.5°
【解析】
根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.
【详解】
解:∵四边形ABCD是正方形,
∴∠ACD=∠ACB=45°.
∵∠ACB=∠CAE+∠AEC,
∴∠CAE+∠AEC=45°.
∵CE=AC,
∴∠CAE=∠E=22.5°.
故答案为22.5°
本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.
23、2
【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.
详解:∵这个样本的众数为3,
∴a,b,c中至少有两个数是3.
∵平均数为2,
∴1+3+a+b+c+2+2=2×7,
∴a+b+c=6,
∴a,b,c中有2个3,1个0,
∴从小到大可排列为:0,1,2,2,3,3,3,
∴中位数是2.
故答案为:2.
点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
根据平行四边形的性质,三角形周长的定义即可解决问题;
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,OA=OC,OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长=BC+OB+OC=6+8=1.
本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握平行四边形的对角线互相平分,属于中考常考题型.
25、这样定价不合理,理由见解析
【解析】
根据加权平均数的概念即可解题.
【详解】
解:这样定价不合理.
(元/).
答:该什锦糖果合理的单价为18.7元/.
本题考查了加权平均数的实际计算,属于简单题,熟悉加权平均数的概念是解题关键.
26、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
河南省商丘市柘城县2025届数学九上开学统考模拟试题【含答案】: 这是一份河南省商丘市柘城县2025届数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】: 这是一份河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】: 这是一份河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。