河南省商丘市梁园区2024-2025学年数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知平行四边形ABCD中,∠B=2∠A,则∠A=( )
A.36°B.60°C.45°D.80°
2、(4分)下列各式中,正确的是( )
A.B.C.D.
3、(4分)若是三角形的三边长,则式子的值( ).
A.小于0B.等于0C.大于0D.不能确定
4、(4分)一个正多边形的内角和为,则这个正多边形的每一个外角的度数是( )
A.B.C.D.
5、(4分)下列调查中,不适合普查但适合抽样调查的是( )
A.调查年级一班男女学生比例B.检查某书稿中的错别字
C.调查夏季冷饮市场上冰淇凌的质量D.调查载人航天飞船零件部分的质量
6、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AC=5,BC=6,则线段EF的长为( )
A.5B.C.6D.7
7、(4分)已知a>b,c≠0,则下列关系一定成立的是( ).
A.ac>bcB.C.c-a>c-bD.c+a>c+b
8、(4分)如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25B.25、24C.25、25D.23、25
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.
10、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
11、(4分)已知锐角,且sin=cs35°,则=______度.
12、(4分)化简得 .
13、(4分)若正多边形的每一个内角为,则这个正多边形的边数是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形中,.
(1)请用尺规作图法,在矩形中作出以为对角线的菱形,且点分别在上.(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,求菱形的边长.
15、(8分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
(1)根据图示填写下表:
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
16、(8分)如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.
求点D的坐标;
求出四边形AOCD的面积;
若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.
17、(10分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士” 组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样 调查了全市 40 个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行
处理(设所测数据均为正整数),得频数分布表如下:
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= , b= , c= ;
(2)补充完整频数分布直方图;
(3)如果全市共有 300 个测量点,那么在这一时刻噪声声级小于 75dB 的测量点约有多少个?
18、(10分)某县教育局为了了解学生对体育立定跳远()、跳绳()、掷实心球()、中长跑()四个项目的喜爱程度(每人只选一项),确定中考体育考试项目,特对八年级某班进行了调查,并绘制成如下频数、频率统计表和扇形统计图:
(1)求出这次调查的总人数;
(2)求出表中的值;
(3)若该校八年级有学生1200人,请你算出喜爱跳绳的人数,并发表你的看法.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)对下列现象中蕴含的数学原理阐述正确的是_____(填序号)
①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.
②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.
③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.
④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.
20、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
21、(4分)不等式组的解集为x>2,则a的取值范围是_____________.
22、(4分)比较大小:_______2(填“>”或“<”).
23、(4分)若关于 x 的分式方程的解为正数,则 m 的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B.
(1)求B点坐标;
(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D.
①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N.若,MN=2MQ,求t的值;
②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由.
25、(10分)如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点F为AD的中点,连接FE并延长交BC于点G.
(1)求证:;
(2)若,,,求BG的长.
26、(12分)某校八年级学生全部参加“禁毒知识竞赛”,从中抽取了部分学生,将他们的竞赛成绩进行统计后分为,,,四个等次,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:
(1)抽取了_______名学生成绩;
(2)扇形统计图中等级所在扇形的圆心角度数是_________;
(3)为估算全校八年级“禁毒知识竞赛”平均分,现将、、、依次记作分、分、分、分,请估算该校八年级知识竞赛平均分.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.
【详解】
∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.
∵∠B=2∠A,∴∠A=60°.
故选B.
本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.
2、D
【解析】
先想一下分式的基本性质的内容,根据分式的基本性质逐个判断即可.
【详解】
解:(A)原式=,故A错误;
(B)原式=,故B错误;
(C)原式=,故C错误;
故选:D.
本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和判断能力,题目比较典型,比较容易出错.
3、A
【解析】
先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.
【详解】
解:=(a-b+c)(a-b-c)
根据三角形两边之和大于第三边,两边之差小于第三边,
(a-c+b)(a-c-b)<0
故选A.
本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.
4、A
【解析】
根据多边形的内角和公式求出边数,从而求得每一个外角的度数.
【详解】
多边形的内角和为,即
解得:
∴该多边形为正八边形
∴正八边形的每一个外角为:
故选:A
本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.
5、C
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.
【详解】
A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,
B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.
C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,
D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.
故选C
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、B
【解析】
只要证明OF=OC,再利用三角形的中位线定理求出EO即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=,
∵AE=EB,
∴EF∥BC,OE=BC=3,
∴∠F=∠FCG,
∵∠FCG=∠FCO,
∴∠F=∠FCO,
∴OF=OC=,
∴EF=EO+OF=,
故选B.
本题考查平行四边形的性质、三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
7、D
【解析】
根据不等式的基本性质一一判断可得答案.
【详解】
解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;
B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误;
C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;
D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.
故选D.
本题主要考查的是不等式的基本性质.
不等式的性质1: 不等式两边加(或减)同一个数(或式子), 不等号的方向不变.即如果a>b, 那么ac>bc;
不等式的性质2: 不等式两边乘(或除)以同一个正数, 不等号的方向不变.即如果a>b, c>0, 那么ac>bc或(>);
不等式的性质3: 不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac
【解析】
中位数:一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数),叫做这组数据的中位数.众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.
【详解】
已知可知这组数据中出现次数最多的是25,次数为5,所以这组数据的众数是25.
由于2+5+3+4=14,因此中位数等于将这组数据按从小到大的顺序排列后中间两数
的平均数,而这组数据从小到大排列后位于第7、8位的数都是25.
故这组数据的中位数为25.
故选C.
此题考查中位数和众数的概念,解题关键在于掌握其概念.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.
【详解】
解:作AH⊥BC于H点,
∵四边形DEFG为矩形,
∴△ADG∽△ABC,△BDE∽△BAH,
∵的面积为36,边cm
∴AH=6
∵EF=2DE,即DG=2DE
解得:DE=3
∴DG=6
故答案为:6
本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
10、2.4
【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,
由三角形面积公式得:12×4=12×5×AP,
∴AP=2.4,
即EF=2.4
此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形
11、1
【解析】
对于任意锐角A,有sinA=cs(90°-A),可得结论.
【详解】
解:∵sinα=cs35°,
∴α=90°-35°=1°,
故答案为:1.
此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.
12、.
【解析】
试题分析:原式=.
考点:分式的化简.
13、八(或8)
【解析】
分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.
详解:根据正多边形的每一个内角为,
正多边形的每一个外角为:
多边形的边数为:
故答案为八.
点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)菱形的边长为.
【解析】
(1)连接BD,作BD的垂直平分线交AD、BC与E、F,点E、F即为所求的点;
(2)设ED=x,则BE=x,AE=5-x,在Rt△ABE中利用勾股定理可以算出x的值即可.
【详解】
(1)连接BD,作BD的垂直平分线交AD、BC与E、F,连接BE,DF即可,如图,菱形即为所求.
(2)设的长为,
∵,
∴,
∴在中,,
即,
解得,即菱形的边长为.
此题主要考查了菱形的判定与性质,以及勾股定理的应用,关键是正确画出图形,熟练掌握菱形的判定方法.
15、(1)九(1)的平均数为85,众数为85,九(2)班的中位数是80;(2)九(1)班成绩好些,分析见解析;(3)=70,=100
【解析】
(1)先根据条形统计图得出每个班5名选手的复赛成绩,然后平均数按照公式 ,中位数和众数按照概念即可得出答案;
(2)对比平均数和中位数,平均数和中位数大的成绩较好;
(3)按照方差的计算公式计算即可.
【详解】
解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
九(2)班5名选手的复赛成绩为:70、100、100、75、80,
∴九(1)的平均数为(75+80+85+85+100)÷5=85,
九(1)的众数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
∴九(2)班的中位数是80;
(2)九(1)班成绩好些.因为两个班平均分相同,但九(1)班的中位数高,所以九(1)班成绩好些.
(3)==70
==100
本题主要考查数据的统计与分析,掌握平均数,中位数,众数和方差是解题的关键.
16、(1)点坐标为;(2);(3)点E的坐标为、、、,、、.
【解析】
先确定直线的解析式,进而求出点的坐标,再分两种情况:Ⅰ、当点在点右侧时,Ⅱ、当点在点左侧时,同Ⅰ的方法即可得出结论.
(1)把点坐标代入可得到,则,然后根据两直线相交的问题,通过解方程组得到点坐标;
(2)先确定点坐标为然后利用四边形的面积进行计算即可;
(3)设出点的坐标,进而表示出,再利用等腰三角形的两腰相等建立方程,即可得出结论;
【详解】
解:把代入得,解得,
,
设,
,,
,
或,
点坐标为或,
Ⅰ、当时,
把代入得,解得,
,
解方程组得,
点坐标为;
当时,,
点坐标为,
四边形AOCD的面积
;
设,
,,
,,,
是等腰三角形,
当时,
,
或,
或
当时,
,
或舍
,
当时,
,
,
,
Ⅱ、当点时,
把代入得,解得,
,
解方程组,得,
点坐标为;
当时,,
点坐标为,
四边形AOCD的面积
;
设
,,
,,
当时,
,
或,
或
当时,
,
或舍
,
当时,
,
,
,
综上所述,点E的坐标为、、、,、、.
此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.
17、(1)a=8, b=12, c=0.3;(2)见解析;(3)90.
【解析】
(1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;
(2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;
(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.
【详解】
(1)根据频数与频率的正比例关系,可知 ,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;
(2)如图:
(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,
∴在这一时噪声声级小于75dB的测量点约有90个.
此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.
18、(1)60;(2) ;(3)240人,看法见解析
【解析】
(1)用C科目人数除以其所占比例;
(2)根据频数=频率×总人数求解可得;
(3)总人数乘以样本中B科目人数所占比例,根据图表得出正确的信息即可.
【详解】
解:(1)这次调查的总人数为6÷(36÷360)=60(人);
(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);
(3)喜爱跳绳的人数为1200×0.2=240(人),
由扇形统计图知喜爱立定跳远的人数占总人数的一半,是四个学科中人数最多的科目.
本题考查了扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①③④
【解析】
①平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;
②矩形的判定定理:对角线相等的平行四边形是矩形;
③首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则重叠部分为菱形;
④根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.
【详解】
解:①由题意得:AB∥CD,AD∥BC,
∵两组对边分别平行,
∴四边形ABCD是平行四边形,故正确;
②∵两组对边的长度相等,
∴四边形是平行四边形,
∵对角线相等,
∴此平行四边形是矩形,故错误;
③∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
∴AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);
过点D分别作AB,BC边上的高为DE,DF.如图所示:
则DE=DF(两纸条相同,纸条宽度相同);
∵平行四边形ABCD的面积=AB×DE=BC×DF,
∴AB=BC.
∴平行四边形ABCD为菱形(一组邻边相等的平行四边形是菱形),故正确;
④根据折叠原理,对折后可得:
所得的四边形有三个直角,且一组邻边相等,
所以可以裁出正方形纸片,故正确.
故答案为①③④.
本题考查了平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定,熟练掌握判定定理是解题的关键.
20、1
【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
【详解】
设购买篮球x个,则购买足球个,
根据题意得:,
解得:.
为整数,
最大值为1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
21、a≤2
【解析】
根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.
【详解】
由题意得a≤2.
本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).
22、<
【解析】
试题解析:
故答案为:
23、m>1
【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【详解】
解:去分母得,m-1=2x+2,
解得,x=,
∵方程的解是正数,
∴m-1>2,
解这个不等式得,m>1,
∵+1≠2,
∴m≠1,
则m的取值范围是m>1.
故答案为:m>1.
本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2)①,;②
【解析】
【分析】(1)用待定系数法求解;(2)点Q的位置有两种情况:当点Q在点A左侧,点P的右侧时;当点Q在点P的右侧时,.都有,再根据MN=2MQ,可求t的值;(3)由BC=CD,证△BCO≌△CDE,设C(a,0),D(4+a,-a),并代入解析式,通过解方程组可得.
【详解】解:(1)设直线l1的解析式为y=kx+b,
直线经过点P(2,2),A(4,0),
即, 解得,
直线l1的解析式为y=-x+4;
(2)①∵直线l2过点P(2,2)且,
即直线l2:,
点Q(t,0),M(t,4-t),N(t,),
1. 当点Q在点A左侧,点P的右侧时,
,,
即,解得;
⒉ 当点Q在点A右侧时
,MQ=t-4,
即,解得t=10,
②过点D作DE⊥AC于E ,
∵BC=CD,BO=OA,
∠DBC=∠1+∠ABO=∠BDC=∠2+∠DAE,
∴∠1=∠2,
∴△BCO≌△CDE,
∴OC=ED,BO=CE,
设C(a,0),D(4+a,-a),
则,
解得,
即
【点睛】本题考核知识点:一次函数综合应用. 本题先用待定系数法求解析式,比较容易;后面要根据数形结合,结合线段的和差关系,情况讨论,比较综合;最后一小题要先证明三角形全等,得到线段的关系,再根据这个关系列出方程组,化简得到答案,这也比较难.
25、(1)见解析;(2).
【解析】
(1)由直角三角形斜边中线定理,得到EF=DF,然后得到∠FED=∠FDE,利用平行线的性质和对顶角相等,得到∠EBG=∠BEG,从而得到BG=GE.
(2)由平行四边形和平行线的性质,可以得到△ABE为等腰直角三角形,根据计算得AE=BE=3,又AF=EF=3,可得△AEF为等边三角形,则∠EAD=60°,从而得到∠EBG=∠ADE=30°,进而得到BG的长度.
【详解】
解:(1)证明:∵
∴
∵点F是AD的中点
∴
∴
∵四边形ABCD是平行四边形
∴
∴
∵
∴
∴
(2)∵四边形ABCD是平行四边形
∴,
∴
∵
∴
∴
∴
由(1)可得,
∴是等边三角形
∴
∴
∴
;
本题考查了等腰三角形判定和性质,直角三角形斜边中线定理,以及含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的角度和边长的计算问题.
26、 (1)600;(2) ;(3)67.2分
【解析】
(1)共抽取学生252÷42%=600(名);
(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°;
(3)估计禁毒知识竞赛平均分: ×(288×80+252×60+48×40+12×20)=67.2.
【详解】
解:(1)252÷42%=600(名),
故答案为600;
(2)扇形统计图中D等级所在扇形的圆心角度数是360°×=7.2°,
故答案为7.2°;
(3)×(288×80+252×60+48×40+12×20)=67.2,
答:估计禁毒知识竞赛平均分为67.2分.
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
题号
一
二
三
四
五
总分
得分
批阅人
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
九(2)
85
100
组别
噪声声级分组
频数
频率
1
44.5~59.5
4
0.1
2
59.5~74.5
a
0.2
3
74.5~89.5
10
0.25
4
89.5~104.5
b
c
5
104.5~119.5
6
0.15
合计
40
1.00
河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】: 这是一份河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】: 这是一份河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】: 这是一份河南省商丘市梁园区李庄乡第一初级中学2025届数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。