|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】
    立即下载
    加入资料篮
    河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】01
    河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】02
    河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】

    展开
    这是一份河南省师范大附属中学2024-2025学年九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为( )
    A.1B.C.D.
    2、(4分)函数 y=中,自变量x的取值范围是( )
    A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣2
    3、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
    A.小于米B.大于米C.等于米D.无法确定
    4、(4分)已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则的值为( )
    A.2B.-1
    C.-D.-2
    5、(4分)如图,为矩形的对角线的中点,过点作的垂线分别交、于点、,连结.若该矩形的周长为20,则的周长为( )
    A.10B.9C.8D.5
    6、(4分)如图,已知一次函数的图象与轴,轴分别交于点(2,0),点(0,3).有下列结论:①关于的方程的解为;②当时,;③当时,. 其中正确的是( )
    A.①②B.①③C.②③D.①③②
    7、(4分)若与最简二次根式是同类二次根式,则m的值为( )
    A.5B.6C.2D.4
    8、(4分)下列美丽的图案,不是中心对称图形的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.
    10、(4分)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,−2,+1,0,+2,−3,0,+1,则这组数据的方差是________.
    11、(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边形DEOF,其中正确结论的序号是_____.
    12、(4分)若关于的一元一次不等式组所有整数解的和为-9,且关于的分式方程有整数解,则符合条件的所有整数为__________.
    13、(4分)已知关于x的方程=1的解是负值,则a的取值范围是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) “知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节项目的比赛,每人进行了4次测试,对照一定的标准,得分如下:甲:80,1,100,50;乙:75,80,75,1.如果你是教练,你打算安排谁代表学校参赛?请说明理由.
    15、(8分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性
    的方案是________;
    方案一:调查八年级部分男生;
    方案二:调查八年级部分女生;
    方案三:到八年级每个班去随机调查一定数量的学生.
    (2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:
    ①本次调查学生人数共有_______名;
    ②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;
    ③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.
    16、(8分)如图,三个顶点的坐标分别是.
    (1)请画出向左平移个单位长度后得到的;
    (2)请画出关于原点对称的;
    (3)在轴上求点的坐标,使的值最小.
    17、(10分)如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.
    (1)求证:四边形是平行四边形;
    (2)若,,求四边形的周长.
    18、(10分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
    (1)求证:四边形ACFD是平行四边形.
    (2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
    (3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.
    20、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.
    21、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.
    22、(4分)如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为_________.
    23、(4分)如图,直线y=x+1与坐标轴相交于A、B两点,在其图象上取一点A1,以O、A1为顶点作第一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样作下去,则第10个等边三角形的边长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解方程:x2-3x=5x-1
    25、(10分)如图,在平面直角坐标系中,,并且满足.一动点从点出发,在线段上以每秒个单位长度的速度向点移动;动点从点出发在线段上以每秒个单位长度的速度向点运动,点分别从点同时出发,当点运动到点时,点随之停止运动.设运动时间为(秒)
    (1)求两点的坐标;
    (2)当为何值时,四边形是平行四边形?并求出此时两点的坐标.
    (3)当为何值时,是以为腰的等腰三角形?并求出此时两点的坐标.
    26、(12分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.
    (1)试判断四边形AEDF的形状,并证明你的结论;
    (2)若∠BAC=60°,AE=6,求四边形AEDF的面积;
    (3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,,∴△ADE≌△BDF,∴∠2=∠1,DE=DF,∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为,∴EF的最小值为.故选D.
    2、B
    【解析】
    依题意,得x+2≥0,
    解得:x≥-2.
    故选B.
    3、A
    【解析】
    由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
    【详解】
    解:在直角三角形AOB中,因为OA=2,OB=7
    由勾股定理得:AB=,
    由题意可知AB=A′B′=,
    又OA′=3,根据勾股定理得:OB′=2,
    ∴BB′=7-2<1.
    故选A.
    本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
    4、D
    【解析】
    由题意得,
    ,,
    ∴=.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
    5、A
    【解析】
    根据线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等,可得出AE=CE,即可得出的周长.
    【详解】
    解:∵为矩形的对角线的中点,
    ∴AO=OC,
    又∵AC⊥EF,
    ∴AE=CE,
    又∵矩形的周长为20,
    ∴AD+CD=
    ∴的周长为CD+CE+DE= CD+AE+ DE=10
    故答案为A.
    此题主要考查利用线段垂直平分线的性质,进行等量转换,即可解题.
    6、A
    【解析】
    根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.
    【详解】
    由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;
    ②当x>2时,y<0,故②正确;
    ③当x<0时,y>3,故③错误;
    故选:A
    本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.
    7、C
    【解析】
    直接化简二次根式,进而利用同类二次根式的定义分析得出答案.
    【详解】
    ∵,与最简二次根式是同类二次根式,
    ∴m+1=3,
    解得:m=1.
    故选:C.
    考查了同类二次根式,正确把握同类二次根式的定义是解题关键.
    8、B
    【解析】
    解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,
    故选B.
    本题考查中心对称图形,正确识图是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
    【详解】
    解:设这个多边形是n边形,由题意得,n-2=7,
    解得:n=9,
    故答案为:9.
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    10、2.1
    【解析】
    解:平均数=(1-2+1+0+2-3+0+1)÷8=0;
    方差==2.1,故答案为2.1.
    考点:方差;正数和负数.
    11、(1)、(2)、(4).
    【解析】
    ∵四边形ABCD是正方形,
    ∴AB=AD=CD=BC,∠BAD=∠ADC=90°.
    ∵CE=DF,
    ∴AD-DF=CD-CE,
    即AF=DE.
    在△BAF和△ADE中,

    ∴△BAF≌△ADE(SAS),
    ∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,
    ∴S△BAF-S△AOF=S△ADE-S△AOF,
    即S△AOB=S四边形DEOF.
    ∵∠ABF+∠AFB=90°,
    ∴∠EAF+∠AFB=90°,
    ∴∠AOF=90°,
    ∴AE⊥BF;
    连接EF,在Rt△DFE中,∠D=90°,
    ∴EF>DE,
    ∴EF>AF,
    若AO=OE,且AE⊥BF;
    ∴AF=EF,与EF>AF矛盾,
    ∴假设不成立,
    ∴AO≠OE.
    ∴①②④是正确的,
    故答案是:①②④.
    【点睛】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,三角形的面积关系的运用及直角三角形的性质的运用,在解答中求证三角形全等是关键.
    12、-4,-1.
    【解析】
    不等式组整理后,根据所有整数解的和为-9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.
    【详解】
    解:,
    不等式组整理得:-4≤x<a,
    由不等式组所有整数解的和为-9,得到-2<a≤-1,或1<a≤2,
    即-6<a≤-1,或1<a≤6,
    分式方程,
    去分母得:y2-4+2a=y2+(a+2)y+2a,
    解得:y=- ,
    经检验y=-为方程的解,
    得到a≠-2,
    ∵有整数解,
    ∴则符合条件的所有整数a为-4,-1,
    故答案为:-4,-1.
    此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键.
    13、a<-2且a≠-4
    【解析】
    表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.
    【详解】
    解:方程=1,
    去分母得:2x-a=x+2,
    解得:x=a+2,
    由分式方程的解为负值,得到a+2<0,且a+2≠-2,
    解得:a<-2且a≠-4,
    故答案为:a<-2且a≠-4
    此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.
    三、解答题(本大题共5个小题,共48分)
    14、选乙代表学校参赛;理由见解析.
    【解析】
    分别计算出甲、乙2名候选人的平均分和方差即可.
    【详解】
    解:选乙代表学校参赛;
    ∵=75,
    ∴S2甲=[(80﹣75)2+(1﹣75)2+(100﹣75)2+(50﹣75)2]=325,
    S2乙═[(75﹣75)2+(80﹣75)2+(75﹣75)2+(1﹣75)2]=12.5,
    ∵S2甲>S2乙
    ∴乙的成绩比甲的更稳定,选乙代表学校参赛.
    考查了方差的知识,解题的关键是熟记公式并正确的计算,难度不大.
    15、(1)方案三;(2)①120;②216;③150.
    【解析】
    (1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
    (2)①由不了解的人数和所占的比例可得出调查总人数;
    ②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;
    ③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。
    【详解】
    解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
    (2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;
    ②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图
    故答案为:216;
    ③500×=150名
    故答案为:150
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    16、(1)见解析;(2)见解析;(3)点坐标为:.
    【解析】
    (1)分别作出三顶点向左平移5个单位长度后得到的对应点,再顺次连接即可得;
    (2)分别作出三顶点关于原点O成中心对称的对应点,再顺次连接即可得;
    (3)作点A关于x轴的对称点A′,连接A′B,与x轴的交点即为所求.
    【详解】
    解:(1)如图所示:,即为所求;
    (2)如图所示:,即为所求;
    (3)如图所示:作点A关于x轴的对称点A′,连接A′B,此时的值最小,点坐标为:.
    本题考查了利用平移变换和旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.
    17、(1)见解析;(2)
    【解析】
    (1)根据三角形中位线的性质得到DE∥AB,根据平行四边形的判定定理即可得到结论;
    (2)连接AE,根据直角三角形的性质得到∠ABE=30°,解直角三角形即可得到结论
    【详解】
    (1)证明:如图,

    ∵ 点E、F分别是BC、AC边上的中点


    四边形是平行四边形
    (2)解:连接 ,
    ,点是边上的中点

    在中,

    由(1)知,四边形是平行四边形
    四边形的周长
    本题考查了平行四边形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.
    18、(1)见解析;(2)将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)
    【解析】
    (1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24 cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.
    【详解】
    (1)证明:∵四边形ACFD是由Rt△ABC平移形成的,
    ∴AD∥CF,AC∥DF.
    ∴四边形ACFD为平行四边形.
    (2)解:由题易得BC==8(cm),△ABC的面积=24 cm2.
    要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,
    ∴将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.
    (3)解:将Rt△ABC向左平移4 cm,
    则BE=AD=4 cm.
    又∵BC=8 cm,∴CE=4 cm=AD.
    由(1)知四边形ACFD是平行四边形,
    ∴AD∥BF.
    ∴∠HAD=∠HCE.
    又∵∠DHA=∠EHC,
    ∴△DHA≌△EHC(AAS).
    ∴DH=HE=DE=AB=3 cm.
    ∴S△HEC=HE·EC=6 cm2.
    ∵△ABC≌△DEF,
    ∴S△ABC=SDEF.
    由(2)知S△ABC=24 cm2,
    ∴S△DEF=24 cm2.
    ∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).
    本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
    【详解】
    由题意可知:中间小正方形的边长为:a-b,
    ∵每一个直角三角形的面积为:ab=×8=4,
    ∴4×ab+(a-b)2=25,
    ∴(a−b)2=25-16=9,
    ∴a-b=3,
    故答案为3.
    本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.
    20、4
    【解析】
    ▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.
    【详解】
    解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.
    本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.
    21、4
    【解析】
    第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.
    【详解】
    根据题意:第一个正方形的边长为64cm;
    第二个正方形的边长为:64×=32cm;
    第三个正方形的边长为:64×()2cm,

    此后,每一个正方形的边长是上一个正方形的边长的 ,
    所以第9个正方形的边长为64×()9-1=4cm,
    故答案为4
    本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
    22、
    【解析】
    利用△BFE∽△DFA,可求出△DFA的面积,再利用来求出△BAF的面积,即可得△ABD的面积,它的2倍即为的面积.
    【详解】
    解:中,BE∥AD,
    ∴△BFE∽△DFA,
    ∴.
    而△BEF的面积是1,
    ∴S△DFA=.
    又∵△BFE∽△DFA
    ∴.
    ∵,即可知S△BAF=.
    而S△ABD=S△BAF+S△DFA
    ∴S△AFD=.
    ∴▱ABCD的面积=×2=.
    故答案为.
    本题考查的是利用相似形的性质求面积,把握相似三角形的面积比等于相似比的平方是解决本题的重点.
    23、
    【解析】
    作A1D⊥x轴于D,A2E⊥x轴于E,根据等边三角形的性质得OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,设OD=t,B1E=a,则A1D=t,A2E=a,则A1点坐标为(t, t),把A1的坐标代入y=x+1,可解得t=,于是得到B1点的坐标为(,0),OB1=,则A2点坐标为(+a, a),然后把A2的坐标代入y=x+1可解得a=,B1B2=2,同理得到B2B3=4,…,按照此规律得到B9B10=29•.
    【详解】
    解:作A1D⊥x轴于D,A2E⊥x轴于E,如图,
    ∵△OA1B1、△B1A2B2均为等边三角形,
    ∴OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,
    设OD=t,B1E=a,则A1D=t,A2E=a,
    ∴A1点坐标为(t, t),
    把A1(t, t)代入y=x+1,得t=t+1,解得t=,
    ∴OB1=,
    ∴A2点坐标为(+a, a),
    把A2(+a, a)代入y=x+1,得a=(+a)+1,解得a=,
    ∴B1B2=2,
    同理得到B2B3=22•,
    …,
    按照此规律得到B9B10=29•.
    故选答案为29•.
    本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等边三角形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、x=4±
    【解析】
    根据一元二次方程的解法即可求出答案.
    【详解】
    解:∵x2-3x=5x-1,
    ∴x2-8x=-1
    ∴x2-8x+16=15,
    ∴(x-4)2=15,
    ∴x=4±;
    此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.
    25、 (1);(2);(3) 或.
    【解析】
    (1)由二次根式有意义的条件可求出a、b的值,再根据已知即可求得答案;
    (2)由题意得:,则,当时,四边形是平行四边形,由此可得关于t的方程,求出t的值即可求得答案;
    (3)分、两种情况分别画出符合题意的图形,
    【详解】
    (1)由,
    则,

    ∵AB//OC,A(0,12),B(a,c),
    ∴c=12,
    ∴;
    (2)如图,
    由题意得:,
    则:,
    当时,四边形是平行四边形,

    解得:,

    (3)当时,过作,则四边形AOQN是矩形,
    ∴AN=OQ=t,QN=OA=12,
    ∴PN=t,
    由题意得:,
    解得:,
    故,
    当时,过作轴,
    由题意得:,
    则,
    解得:,
    故.
    本题考查了二次根式有意义的条件,平行形的性质,矩形的判定与性质,等腰三角形的性质,坐标与图形的性质等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    26、(1)四边形AEDF是菱形,证明见详解;(2);(3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形.
    【解析】
    (1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;
    (2)先证明△AEF是等边三角形,然后根据菱形的面积公式即可得到结论;
    (3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
    【详解】
    解:如图,
    (1)四边形AEDF是菱形,证明如下:
    ∵AD平分∠BAC,
    ∴∠1=∠2,
    又∵EF⊥AD,
    ∴∠AOE=∠AOF=90°,
    ∵在△AEO和△AFO中,
    ∴△AEO≌△AFO(ASA),
    ∴EO=FO,
    ∵EF垂直平分AD,
    ∴EF、AD相互平分,
    ∴四边形AEDF是平行四边形,
    又EF⊥AD,
    ∴平行四边形AEDF为菱形;
    (2)∵四边形AEDF为菱形,
    ∴AE=AF,
    ∵∠BAC=60°,
    ∴△AEF是等边三角形,∠1=30°,
    ∴AO=,EF=AE=6,
    ∴AD=,
    ∴四边形AEDF的面积=AD•EF=××6=;
    (3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形;
    ∵∠BAC=90°,
    ∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
    本题主要考查了菱形的判定和性质和正方形的判定,关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
    题号





    总分
    得分
    批阅人
    相关试卷

    海南省华东师范大第二附属中学2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份海南省华东师范大第二附属中学2024-2025学年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省华南师范大第二附属中学2024-2025学年九上数学开学达标测试试题【含答案】: 这是一份广东省华南师范大第二附属中学2024-2025学年九上数学开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市师范大泉州附属中学2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份福建省福州市师范大泉州附属中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map