|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】01
    河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】02
    河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】

    展开
    这是一份河南省信阳市名校2025届九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数的图像如图所示,则的取值范围是( )
    A.B.C.D.
    2、(4分)下列分解因式正确的是( )
    A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1-)D.(x-1)2=x2-2x+1
    3、(4分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
    甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
    乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
    根据两人的作法可判断()
    A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误
    4、(4分)如图,在平面直角坐标系中,点B在x轴上,△AOB是等腰三角形,AB=AO=5,BO=6,则点A的坐标为( )
    A.(3,4)B.(4,3)C.(3,5)D.(5,3)
    5、(4分)一次函数y=﹣3x+5的图象不经过的象限是第( )象限
    A.一 B.二 C.三 D.四
    6、(4分)在下列性质中,平行四边形不一定具有的是( )
    A.对边相等B.对边平行C.对角互补D.内角和为360°
    7、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
    A.AB=ACB.AB=BCC.BE平分∠ABCD.EF=CF
    8、(4分)一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是( )
    A.y1>y2B.y1=y2C.y1<y2D.y1≥y2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,点在上,且,点在上,连结,若与相似,则_____________.
    10、(4分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
    11、(4分)正五边形的内角和等于______度.
    12、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
    13、(4分)如图,菱形 OABC 的顶点 O 是原点,顶点 B 在 y 轴上,菱形的两条对角线的长分别是 8 和 6(AC>BC),反比例函数 y (x<0)的图象经过点 C,则 k 的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
    (1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
    (2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
    (3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
    15、(8分)关于x的方程ax2+bx+c=0(a0).
    (1)已知a,c异号,试说明此方程根的情况.
    (2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.
    16、(8分)如图,菱形的对角线、相交于点,,,连接.
    (1)求证:;
    (2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
    17、(10分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.
    求证:AM=CN.
    18、(10分)已知关于的一元二次方程.
    (1)求证:无论取何实数,该方程总有两个不相等的实数根;
    (2)若方程的一根为3,求另一个根.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.
    20、(4分)某射手在相同条件下进行射击训练,结果如下:
    该射手击中靶心的概率的估计值是______(精确到0.01).
    21、(4分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
    22、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
    23、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用
    (1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;
    (2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
    25、(10分)计算
    (1)5﹣9+
    (2)(2+)2﹣2.
    26、(12分)如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.
    (1)求证:AE=DF;
    (2)当四边形BFDE是矩形时,求t的值;
    (3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.
    【详解】
    ∵一次函数的图象过二、四象限,
    ∴k−2<0,
    解得k<2.
    故选:D.
    此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.
    2、B
    【解析】
    根据因式分解的定义对各选项分析判断后利用排除法求解.
    【详解】
    A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;
    B、x2-x=x(x-1),故选项正确;
    C、x-1=x(1-),不是分解因式,故选项错误;
    D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
    故选:B.
    本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.
    3、C
    【解析】
    试题分析:甲的作法正确:
    ∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.
    ∵MN是AC的垂直平分线,∴AO=CO.
    在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,
    ∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.
    ∵AC⊥MN,∴四边形ANCM是菱形.
    乙的作法正确:如图,
    ∵AD∥BC,∴∠1=∠2,∠2=∠1.
    ∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.
    ∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.
    ∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.
    ∵AB=AF,∴平行四边形ABEF是菱形.
    故选C.
    4、A
    【解析】
    先过点A作AC⊥OB,根据△AOB是等腰三角形,求出OA=AB,OC=BC,再根据点B的坐标,求出OC的长,再根据勾股定理求出AC的值,从而得出点A的坐标.
    【详解】
    过点A作AC⊥OB,
    ∵△AOB是等腰三角形,
    ∴OA=AB,OC=BC,
    ∵AB=AO=5,BO=6,
    ∴OC=3,
    ∴AC=,
    ∴点A的坐标是(3,4).
    故选:A.
    此题考查了等腰三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.
    5、C
    【解析】
    由k<0,可得一次函数经过二、四象限,再由b>0,一次函数经过第一象限,即可得到直线不经过的象限.
    【详解】
    ∵直线y=﹣3x+5经过第一、二、四象限,
    ∴不经过第三象限,
    故选C.
    本题考查了一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
    6、C
    【解析】
    A、平行四边形的对边相等,故本选项正确;
    B、平行四边形的对边平行,故本选项正确;
    C、平行四边形的对角相等不一定互补,故本选项错误;
    D、平行四边形的内角和为360°,故本选项正确;故选C
    7、A
    【解析】
    当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;
    【详解】
    解:当AB=BC时,四边形DBFE是菱形;
    理由:∵点D、E、F分别是边AB、AC、BC的中点,
    ∴DE∥BC,EF∥AB,
    ∴四边形DBFE是平行四边形,
    ∵DE=BC,EF=AB,
    ∴DE=EF,
    ∴四边形DBFE是菱形.
    故B正确,不符合题意,
    当BE平分∠ABC时,∴∠ABE=∠EBC
    ∵DE∥BC,
    ∴∠CBE=∠DEB
    ∴∠ABE =∠DEB
    ∴BD=DE
    ∴四边形DBFE是菱形,
    故C正确,不符合题意,
    当EF=FC,
    ∵BF=FC
    ∴EF=BF,
    ∴四边形DBFE是菱形,
    故D正确,不符合题意,
    故选A.
    本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
    8、A
    【解析】
    试题分析:k=﹣1<0,y将随x的增大而减小,根据﹣1<1即可得出答案.
    解:∵k=﹣1<0,y将随x的增大而减小,
    又∵﹣1<1,
    ∴y1>y1.
    故选A.
    【点评】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b(k、b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2或4.5
    【解析】
    根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.
    【详解】
    当△AEF∽△ABC时,则,AF=2;
    当△AEF∽△ACB时,则,AF=4.5.
    故答案为:2或4.5.
    本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.
    10、1
    【解析】
    ∵AM=AC,BN=BC,∴AB是△ABC的中位线,
    ∴AB=MN=1m,
    故答案为1.
    11、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°
    12、8
    【解析】
    【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.
    【详解】设另一条对角线的长为x,则有
    =16,
    解得:x=8,
    故答案为8.
    【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.
    13、−12
    【解析】
    先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.
    【详解】
    设菱形的两条对角线相交于点D,如图,
    ∵四边形ABCD为菱形,
    又∵菱形的两条对角线的长分别是8和6,
    ∴OB⊥AC,BD=OD=3,CD=AD=4,
    ∵菱形ABCD的对角线OB在y轴上,
    ∴AC∥x轴,
    ∴C(−4,3),
    ∵点C在反比例函数y=的图象上,
    ∴3=,解得k=−12.
    故答案为:−12.
    本题考查反比例函数和菱形的性质,解题的关键是掌握菱形的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点D(4.5,2.5)是线段AB的“附近点”;
    (2)m的取值范围是;
    (3)b的取值范围是
    【解析】
    (1)点P是线段AB的“附近点”的定义即可判断.
    (2)首先求出直线y=x-2与线段AB交于(,3)分①当m≥时,列出不等式即可解决问题.
    (3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),在Rt△BEF中,BE=1,∠EBF=45°,则点E坐标(6+,3-),
    分别求出直线经过点M点E时的b的值,即可解决问题.
    解:(1)∵点D到线段AB的距离是0.5,
    ∴0.5<1,
    ∴点D(4.5,2.5)是否是线段AB的“附近点”;
    (2)∵点H(m,n)线段AB的“附加点”,点H(m,n)在直线y=x-2上,
    ∴n=m-2;
    直线y=x-2 线段AB交于(,3).
    ①当m≥时,有n=m-2≥3,
    又AB∥x轴,∴此时点H(m、n)到线段AB的距离是n-3.
    ∴0≤n-3,∴≤m≤5.
    综上所述,≤m≤5.
    (3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),

    在Rt△BEF中,BE=1,∠ENF=45°,则点E坐标(6+,3-),
    当直线y=x+b经过点M时,b=1+,
    当直线y=x+b经过点E时,b=-3-,
    ∴-3-≤b≤1+.
    “点睛”本题考查一次函数综合题、线段AB的“附近点”的定义等知识,解题的关键是理解题意,学会分类讨论,学会利用特殊点解决问题,属于中档压轴题.
    15、(1)见解析;(2)x=-3或x=1
    【解析】
    (1)用一元二次的根判别式判断即可;(2)观察得出a(x+2)2+bx+2b+c=0的解是原方程的解加2,从而解出方程
    【详解】
    (1)∵△=b2﹣4ac,
    当a、c异号时,即ac<0,
    ∴△=b2﹣4ac>0,
    ∴该方程必有两个不相等的实数根;
    (2)∵ax2+bx+c=0两根分别为x1=-1,x2=3,
    ∴方程a(x+2)2+bx+2b+c=a(x+2)2+b(x+2)+c=0中的x+2=-1或x+2=3
    解得x=-3或x=1
    熟练掌握一元二次方程根的判别式是解决本题的关键,(2)通过两根不能算出啊,b,c的值则要观察题上两方程之间的关系
    16、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
    【解析】
    (1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
    (2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
    【详解】
    解:(1)证明:∵DE∥AC,CE∥BD,
    ∴四边形OCED是平行四边形,
    ∵四边形ABCD是菱形,
    ∴∠COD=90°,
    ∴四边形OCED是矩形,
    ∴OE=DC;
    (2)当∠ABC=90°时,四边形OCED是正方形,
    理由如下:
    ∵四边形ABCD是菱形,∠ABC=90°,
    ∴四边形ABCD是正方形,
    ∴DO=CO,
    又∵四边形OCED是矩形,
    ∴四边形OCED是正方形.
    本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
    17、见解析.
    【解析】
    由题意可证△AEM≌△FNC,可得结论.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴BE∥DF,AD∥BC
    ∴∠E=∠F,∠AME=∠BNE
    又∵∠BNE=∠CNF
    ∴∠AME=∠CNF
    在△AEM和OCFN中
    ∴ΔAEM≌ΔCFN(AAS)
    ∴AM=CN.
    考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.
    18、(1)见解析;(2)-1.
    【解析】
    (1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.
    (2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.
    【详解】
    解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,
    ∴对于任意实数m,方程总有两个不相等的实数根.
    (2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,
    解得:m=2,
    当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,
    解得:x1=-1,x2=3,
    ∴方程的另一根为-1.
    方法二:设方程的另一个根为a,
    则3a=-3,
    解得:a=-1,
    即方程的另一根为-1.
    本题考查了根的判别式及根与系数的关系,掌握x1+x2=-,x1•x2=与判别式的值与方程的解得个数的关系是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、150, 60
    【解析】
    分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.
    详解:由题意可知小亮的路径是一个正多边形,
    ∵每个外角等于30°,
    ∴每个内角等于150°.
    ∵正多边形的外角和为360°,
    ∴正多边形的边数为360°÷30°=12(边).
    ∴小亮走的周长为5×12=60.
    点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.
    20、0.1.
    【解析】
    根据表格中实验的频率,然后根据频率即可估计概率.
    【详解】
    解:由击中靶心频率都在0.1上下波动,
    ∴该射手击中靶心的概率的估计值是0.1.
    故答案为:0.1.
    本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
    21、1
    【解析】
    【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.
    【详解】∵数据6,x,3,3,5,1的众数是3和5,
    ∴x=5,
    则这组数据为1、3、3、5、5、6,
    ∴这组数据的中位数为=1,
    故答案为:1.
    【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
    22、630
    【解析】
    分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
    详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
    甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
    相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
    则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
    乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
    甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
    所以甲车从B地向A地行驶了120×2.25=270千米,
    当乙车到达A地时,甲车离A地的距离为900-270=630千米.
    点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
    23、
    【解析】
    分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
    详解:∵四边形ABCD是矩形,
    ∴∠BCD=90°,AB∥CD,AD∥BC,
    ∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
    ∵∠ACF=∠AFC,∠FAE=∠FEA,
    ∴∠ACF=2∠FEA,
    设∠ECD=x,则∠ACF=2x,
    ∴∠ACD=3x,
    ∴3x+21°=90°,
    解得:x=23°.
    故答案为:23°.
    点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.
    【解析】
    (1)根据利润=销售收入-成本,即可求出结论;
    (2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    (1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).
    答:如果超市在进价的基础上提高5%作为售价,则亏本1元.
    (2)设该水果的售价为x元/千克,
    根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,
    解得:x≥2.1.
    答:该水果的售价至少为2.1元/千克.
    本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.
    25、(1)9(2)9+2.
    【解析】
    分析:(1)、根据二次根式的化简法则将各式进行化简,然后进行求和得出答案;(2)、根据完全平方公式将括号去掉,然后进行计算得出答案.
    详解:(1)原式=10﹣3+2=9;
    (2)原式=9+4﹣2=9+2.
    点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确二次根式的化简法则是解决这个问题的关键.
    26、(1)证明见解析;(2)1s;(2)8s.
    【解析】
    分析:(1)由∠DFC=90°,∠C=30°,证出DF=2t=AE;
    (2)当四边形BEDF是矩形时,△DEF为直角三角形且∠EDF=90°,求出t的值即可;
    (3)先证明四边形AEFD为平行四边形.得出AB=3,AD=AC-DC=48-4t,若△DEF为等边三角形,则四边形AEFD为菱形,得出AE=AD,2t=48-4t,求出t的值即可;
    详解:(1)在Rt△CDF中,∠C=30°,
    ∴DF=CD,
    ∴DF=•4t=2t,
    又∵AE=2t,
    ∴AE=DF.
    (2)当四边形BFDE是矩形时,有BE=DF,
    ∵Rt△ABC中,∠C=30°
    ∴AB=AC=×48=24,
    ∴BE=AB-AE=24-2t,
    ∴24-2t=2t,
    ∴t=1.
    (3)∵∠B=90°,DF⊥BC
    ∴AE∥DF,∵AE=DF,
    ∴四边形AEFD是平行四边形,
    由(1)知:四边形AEFD是平行四边形
    则当AE=AD时,四边形AEFD是菱形
    ∴2t=48-4t,
    解得t=8,又∵t≤==12,
    ∴t=8适合题意,
    故当t=8s时,四边形AEFD是菱形.
    点睛:本题是四边形综合题,主要考查了平行四边形、菱形、矩形的性质与判定以及锐角三角函数的知识,考查学生综合运用定理进行推理和计算的能力.
    题号





    总分
    得分
    相关试卷

    河南省信阳市平桥区明港镇2024年九上数学开学经典模拟试题【含答案】: 这是一份河南省信阳市平桥区明港镇2024年九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】: 这是一份河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省漯河市名校2024年九上数学开学经典模拟试题【含答案】: 这是一份河南省漯河市名校2024年九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map