河南省许昌市实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】
展开
这是一份河南省许昌市实验中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为( )
A.B.C.D.
2、(4分)如果方程有增根,那么k的值( )
A.1B.-1C.±1D.7
3、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
4、(4分)如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是( )
A.B.C.D.
5、(4分)A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( )
A.AB的中点B.BC的中点
C.AC的中点D.的平分线与AB的交点
6、(4分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是
A.B.C.D.
7、(4分)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A.②③B.②⑤C.①③④D.④⑤
8、(4分)如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为( )
A.55ºB.60ºC.65ºD.75º
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.
10、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.
11、(4分)若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.
12、(4分)如果+=2012, -=1,那么=_________.
13、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)知识再现:
如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.
提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.
在平面直角坐标系中,已知点,.
(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.
(2)如图2,连接,求的长.
(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.
15、(8分)如图,正方形ABCD中,O是对角线的交点,AF平分BAC,DHAF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
16、(8分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.
已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;
已知点的“级关联点”位于y轴上,求的坐标;
已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.
17、(10分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
(1) ①依题意补全图形;②求证:BE⊥AC.
(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
18、(10分)如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数的图象交于A(1,n),B(m,2).
(1)求反比例函数关系式及m的值
(2)若x轴正半轴上有一点M,满足ΔMAB的面积为16,求点M的坐标;
(3)根据函数图象直接写出关于x的不等式的解集
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
20、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
21、(4分)反比例函数与一次函数图象的交于点,则______.
22、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
23、(4分)一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水____________升.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组并在数轴上表示出不等式组的解集.
25、(10分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?
26、(12分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据已知点的坐标变换发现规律进行求解.
【详解】
根据题意得(2,0)变化后的坐标为(1,0);
(2,4)变化后的坐标为(1,4);
故P点(a,b)变化后的坐标为
故选A.
此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.
2、A
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
∵方程的最简公分母为x-7,
∴此方程的增根为x=7.
方程整理得:48+k=7x,
将x=7代入,得48+k=49,则k=1,
选项A正确.
本题主要考查分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
3、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,又是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、B
【解析】
试题分析:当点E在BC上运动时,三角形的面积不断增大,最大面积===1;
当点E在DC上运动时,三角形的面积为定值1.
当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为2.
故选B.
考点: 动点问题的函数图象.
5、A
【解析】
先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.
【详解】
解:如图
∵AB2=2890000,BC2=640000,AC2=2250000
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴活动中心P应在斜边AB的中点.
故选:A.
本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.
6、B
【解析】
图象应分三个阶段,
第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;
第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;
第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.
故选B
考点:函数的图象
本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.
7、B
【解析】
试题分析:
①、MN=AB,所以MN的长度不变;
②、周长C△PAB=(AB+PA+PB),变化;
③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
故选B
考点:动点问题,平行线间的距离处处相等,三角形的中位线
8、D
【解析】
首先根据,结合已知可得的度数,进而计算的度数.
【详解】
解:根据平角的性质可得
又四边形为正方形
在三角形DEC中
四边形为平行四边形
故选D.
本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或
【解析】
分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.
【详解】
解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.
∵PQ垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
∴x2=32+(1-x)2,
解得x=,
∴CD=BC-DB=1-=;
当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,
则D是AB的中点,
∴CD=AB=,
综上可知,CD=或.
故答案为:或.
本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
10、1.
【解析】
如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OA=OC,OB=OD;
又∵△OAB的周长比△OBC的周长大3,
∴AB+OA+OB﹣(BC+OB+OC)=3
∴AB﹣BC=3,
又∵▱ABCD的周长是30,
∴AB+BC=15,
∴AB=1.
故答案为1.
11、
【解析】
把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.
【详解】
∵直线y=kx+3的图象经过点(2,0),
∴0=2k+3,
解得k=-,
则不等式kx+3>0为-x+3>0,
解得:x
相关试卷
这是一份河南省驻马店市新蔡县2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省濮阳市2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份东莞市重点中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。