|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】
    立即下载
    加入资料篮
    河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】01
    河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】02
    河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】

    展开
    这是一份河南省郑州师院附属外语中学2025届数学九上开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列计算正确的是( )
    A.×=B.+=C.D.-=
    2、(4分)如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为( )
    A.3B.4C.5D.6
    3、(4分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )
    A.B.
    C.D.
    4、(4分)已知下面四个方程: +3x=9;+1=1;=1;=1.其中,无理方程的个数是( )
    A.1B.2C.3D.4
    5、(4分)下列条件中能构成直角三角形的是( ).
    A.2、3、4B.3、4、5C.4、5、6D.5、6、7
    6、(4分)如图,把绕着点逆时针旋转得到,,则的度数为( )
    A.B.C.D.
    7、(4分)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是
    A.B.C.D.
    8、(4分)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
    10、(4分)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.
    11、(4分)一个等腰三角形的周长为12cm,设其底边长为y cm,腰长为x cm,则y与x的函数关系是为_____________________.(不写x的取值范围)
    12、(4分)当时,分式的值是________.
    13、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,直线与轴交于点,与轴交于点,.
    (1)求两点的坐标;
    (2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.
    15、(8分)如图,在矩形中,对角线与相交于点,点,分别是,的中点,连结,.
    (1)求证:;
    (2)连结,若,,求矩形的周长.
    16、(8分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)点C(-1,0)是轴上一点,求△ABC的面积.
    17、(10分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;
    18、(10分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).
    (1)画出△ABC向上平移4个单位长度后得到的△A1B1C1;
    (1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)直线的截距是__________.
    20、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
    21、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
    22、(4分)已知,,则2x3y+4x2y2+2xy3=_________.
    23、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
    (1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
    (2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.
    ①若该养老中心建成后可提供养老床位200个,求t的值;
    ②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
    25、(10分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.
    (1)当行李的质量x超过规定时,求y与x之间的函数表达式;
    (2)求旅客最多可免费携带行李的质量.
    26、(12分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.
    (1)求证:∠CBF=∠BCE;
    (2)若点G、M、N在线段BF、BC、CE上,且 FG=MN=CN.求证:MG=NF;
    (3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据二次根式的运算即可判断.
    【详解】
    A. ×=,正确;
    B. +不能计算,故错误;
    C. ,故错误;
    D. -=,故错误;
    故选A.
    此题主要考查二次根式的计算,解题的关键是熟知二次根式的运算法则.
    2、C
    【解析】
    连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.
    【详解】
    连接CG,
    ∵四边形ABCD是矩形,
    ∴AB∥CD,∠B=90∘,AD=BC=8,
    ∴∠AGD=∠GDC,
    ∵DG平分∠ADC,
    ∴∠ADG=∠GDC,
    ∴∠AGD=∠ADG,
    ∴AG=AD=8,
    ∵AF⊥DG于点F,
    ∴FG=FD,
    ∵点E是CD的中点,
    ∴EF是△DGC的中位线,
    ∴EF=CG,
    ∵AB=14,
    ∴GB=6,
    ∴CG==10,
    ∴EF=×10=5,
    故选C.
    此题主要考查矩形的线段求解,解题的关键是熟知平行线的性质、三角形中位线定理及勾股定理的运用.
    3、A
    【解析】
    根据配方法的步骤逐项分析即可.
    【详解】
    ∵x2+px+q=0,
    ∴x2+px=-q,
    ∴x2+px+=-q+,
    ∴.
    故选A.
    本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
    4、A
    【解析】
    无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.
    【详解】
    无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,
    故选:A.
    本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..
    5、B
    【解析】
    根据勾股定理逆定理进行计算判断即可.
    【详解】
    A.,故不能构成直角三角形;
    B.,故能构成直角三角形;
    C.,故不能构成直角三角形;
    D.,故不能构成直角三角形.
    故选:B.
    本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.
    6、D
    【解析】
    直接根据旋转的性质求解
    【详解】
    绕着点逆时针旋转得到
    ∴BAD=CAE=20°
    ∴==30°+20°=50°
    故选D
    本题考查了旋转的性质。掌握旋转的性质是解题的关键。
    7、D
    【解析】
    根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.
    【详解】
    根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.
    故选D.
    本题主要考查正方形的折叠问题,关键在于确定数量.
    8、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、既是轴对称图形,又是中心对称图形,故此选项正确.
    故选D.
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1;
    【解析】
    根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
    【详解】
    解:∵等腰三角形的两条边长分别为3cm,8cm,
    ∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
    ∴等腰三角形的周长=16+16+8=1cm.
    故答案为1.
    本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
    10、20(1﹣20%)(1﹣x)2=11.1.
    【解析】
    设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.1万元建立方程.
    【详解】
    设这辆车第二、三年的年折旧率为x,有题意,得
    20(1﹣20%)(1﹣x)2=11.1.
    故答案是:20(1﹣20%)(1﹣x)2=11.1.
    一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.1万元建立方程是关键.
    11、y=12-2x
    【解析】
    根据等腰三角形周长公式可求出底边长与腰的函数关系式,
    【详解】
    解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.
    故答案为:y=12-2x.
    本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.
    12、2021
    【解析】
    先根据平方差公式对分式进行化简,再将 代入即可得到答案.
    【详解】
    ==(a+2),将代入得原式=2019+2=2021.
    本题考察平方差公式和分式的化简,解题的关键是掌握平方差公式和分式的化简.
    13、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
    【详解】
    ∵△ABC的三条中位线组成△A1B1C1,
    ∴A1B1=AC,B1C1=AB,A1C1=BC,
    ∴△A1B1C1的周长=△ABC的周长=×3=,
    依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
    则△A5B5C5的周长为=,
    故答案为.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1);(2)直线的解析式为.
    【解析】
    (1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;
    (2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可
    【详解】
    (1)∵直线与轴交于点,与轴交于点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;
    (2)如图,作轴于点,
    ∵四边形是正方形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴设直线的解析式为,把代入,得,
    ∴直线的解析式为.
    本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    15、(1)见解析;(2).
    【解析】
    (1)欲证明BE=CF,只要证明△BOE≌△COF即可;
    (2)利用三角形中位线定理求出AD,解直角三角形求出AB即可解决问题;
    【详解】
    解:(1)∵四边形为矩形,
    ∴,.
    ∵,分别为,的中点,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)∵,分别为,的中点,
    ∴为的中位线.
    ∵,
    ∴.
    ∵,
    ∴,
    ∴.
    ∴ .
    本题考查矩形的性质,三角形全等的判定和性质以及三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    16、(1),;(2).
    【解析】
    (1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;
    (2)由面积的和差关系可求解.
    【详解】
    (1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.
    ∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).
    ∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;
    (2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.
    ∵C(-1,0),∴CD=3.1,∴S△ABC = S△DBC-S△ADC==.
    本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.
    17、证明见解析.
    【解析】
    根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.
    【详解】
    证明:,


    四边形ABCD是平行四边形


    在和中,

    ≌.
    本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.
    18、(1)如图所示:△A1B1C1,即为所求;见解析;(1)如图所示:△A1B1C1,即为所求,见解析.
    【解析】
    (1)根据网格结构找出点A,B,C平移后的对应点A1 ,B1 ,C 连接即可
    (1)根据网格结构找出点A,B,C绕点O逆时针旋转90°后得到的A1,B1,C1,连接即可
    【详解】
    (1)如图所示:△A1B1C1,即为所求;
    (1)如图所示:△A1B1C1,即为所求.
    此题考查作图-旋转变换,作图-平移变换,熟练掌握作图的操作是解题关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-5
    【解析】
    根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.
    【详解】
    直线的截距是−5.
    故答案为:−5.
    此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.
    20、2.
    【解析】
    根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
    【详解】
    Rt△ACD中,AC=AB=4cm,CD=3cm;
    根据勾股定理,得:AD==5cm;
    ∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;
    故橡皮筋被拉长了2cm.
    故答案为2.
    此题主要考查了等腰三角形的性质以及勾股定理的应用.
    21、8或1
    【解析】
    解:如图所示:①当AE=1,DE=2时,
    ∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
    ∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
    ∴平行四边形ABCD的周长=2(AB+AD)=8;
    ②当AE=2,DE=1时,同理得:AB=AE=2,
    ∴平行四边形ABCD的周长=2(AB+AD)=1;
    故答案为8或1.
    22、-25
    【解析】
    先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.
    【详解】
    ∵,,
    ∴2x3y+4x2y2+2xy3
    =2xy(x2+2xy+y2)
    =2xy(x+y)2
    =2×() ×52
    =-25.
    故答案为-25.
    此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.
    23、6
    【解析】
    由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
    【详解】
    ∵四边形ADCE是平行四边形,
    ∴OD=OE,OA=OC.
    ∴当OD取最小值时,DE线段最短,此时OD⊥BC.
    ∴OD是△ABC的中位线,
    ∴,,
    ∴,
    ∵在Rt△ABC中,∠B=90°,
    ,,
    ∴,
    ∴.
    故答案为:6.
    本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)20%;(2)①1;②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
    【解析】
    (1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①、设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②、设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.
    【详解】
    (1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,
    由题意可列出方程:2(1+x)2=2.88,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
    答:该市这两年拥有的养老床位数的平均年增长率为20%.
    (2)①设规划建造单人间的房间数为t(10≤t≤30),
    则建造双人间的房间数为2t,三人间的房间数为100﹣3t,
    由题意得:t+4t+3(100﹣3t)=200, 解得:t=1.
    答:t的值是1.
    ②、设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),
    ∵k=﹣4<0, ∴y随t的增大而减小.
    当t=10时,y的最大值为300﹣4×10=260(个),
    当t=30时,y的最小值为300﹣4×30=180(个).
    答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
    考点:(1)一次函数的应用;(2)一元一次方程的应用;(3)一元二次方程的应用.
    25、(1)当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2;
    (2)旅客最多可免费携带行李10kg.
    【解析】
    (1)用待定系数法求一次函数的表达式;
    (2)旅客最多可免费携带行李的质量就是时x的值 .
    【详解】
    (1)根据题意,设与的函数表达式为y=kx+b
    当x=20时,y=2,得2=20k+b当x=50时,y=8,得8=50k+b.
    解方程组,得,所求函数表达式为y=x-2.
    (2) 当y=0时,x-2=0,得x=10.
    答:旅客最多可免费携带行李10kg.
    考点:一次函数的实际应用
    26、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析
    【解析】
    (1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;
    (2)通过证明四边形FGMN是平行四边形,可得MG=NF;
    (3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.
    【详解】
    证明:(1)∵四边形ABCD是矩形
    ∴AB=CD,∠A=∠D=90°,且AF=DE
    ∴△ABF≌△DCE(SAS)
    ∴∠ABF=∠DCE,且∠ABC=∠DCB=90°
    ∴∠FBC=∠ECB
    (2)∵FG=MN=CN
    ∴∠NMC=∠NCM
    ∴∠NMC=∠FBC
    ∴MN∥BF,且FG=MN
    ∴四边形FGMN是平行四边形
    ∴MG=NF
    (3)四边形FGMN是矩形
    理由如下:
    如图,过点N作NH⊥MC于点H,

    ∵MN=NC,NH⊥MC
    ∴∠MNH=∠CNH=∠MNC,NH⊥MC
    ∴∠MNH+∠NMH=90°
    ∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC
    ∴∠BMG=∠MNH,
    ∴∠BMG+∠NMH=90°
    ∴∠GMN=90°
    ∴四边形FGMN是矩形
    本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠MNH是本题的关键.
    题号





    总分
    得分
    相关试卷

    2025届河南省郑州师院附属外语中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届河南省郑州师院附属外语中学数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省郑州师院附属外语中学2023-2024学年数学九上期末教学质量检测试题含答案: 这是一份河南省郑州师院附属外语中学2023-2024学年数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c,下列不是一元二次方程的是,下列说法中,不正确的是,下列事件是必然事件的是等内容,欢迎下载使用。

    2023-2024学年河南省郑州师院附属外语中学九上数学期末质量检测试题含答案: 这是一份2023-2024学年河南省郑州师院附属外语中学九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map