河南省郑州市郑州中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉. 某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果 ,那么她选的高跟鞋的高度约为( )
A.B.C.D.
2、(4分)一次函数y=x-1的图像向上平移2个单位后,不经过 ( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
A.B.C.D.
4、(4分)如图,表示A点的位置,正确的是( )
A.距O点3km的地方
B.在O点的东北方向上
C.在O点东偏北40°的方向
D.在O点北偏东50°方向,距O点3km的地方
5、(4分)下列各点中,在反比例函数的图象上的点是( )
A.B.C.D.
6、(4分)下列运算正确的是( )
A.B.C.D.
7、(4分)以下说法正确的是( )
A.在367人中至少有两个人的生日相同;
B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;
C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;
D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
8、(4分)关于的不等式的解集如图所示,则的取值是
A.0B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
10、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
11、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
12、(4分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为_____.
13、(4分)如图,是六边形的一个内角.若,则的度数为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
15、(8分)计算
(1)×
(2)()0+-(-)-2
16、(8分)(1)解不等式组:
(2)化简:.
17、(10分)如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.
(1)四边形是__________; (填矩形、菱形、正方形或无法确定)
(2)如图,相交于点,若四边形的周长为,求的度数.
18、(10分)先化简,再求值:(+)÷,其中x=﹣1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
20、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
21、(4分)长方形的长是宽的2倍,对角线长是5cm,则这个长方形的长是______.
22、(4分)如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.
23、(4分)若关于x的分式方程=2a无解,则a的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形的对角线、相交于点,,.
(1)求证:四边形是正方形.
(2)若,则点到边的距离为______.
25、(10分)如图,是正方形的对角线,.边在其所在的直线上平移,将通过平移得到的线段记为,连接、,并过点作,垂足为,连接、.
(1)请直接写出线段在平移过程中,四边形是什么四边形;
(2)请判断、之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设,,求与之间的函数关系式.
26、(12分)先化简,再求值,其中x=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可
【详解】
根据已知条件得下半身长是160×0.6=96cm
设选的高跟鞋的高度为xcm,
有
解得x≈7.5
经检验x≈7.5是原方程的解
故选C
本题考查分式方程的应用,能够读懂题意列出方程是本题关键
2、D
【解析】
试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,
所以图象不经过四象限,
故选D.
考点:一次函数图象与几何变换.
3、A
【解析】
根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.
【详解】
解:∵DC∥AB,
∴∠ACD=∠CAB=63°,
由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,
∴∠ADC=∠ACD=63°,
∴∠CAD=54°,
∴∠CAE=9°,
∴∠BAE=54°,
故选:A.
本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.
4、D
【解析】
用方向角和距离表示位置.
【详解】
如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.
故选D
本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.
5、A
【解析】
根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解.
【详解】
解:∵,
∴xy=6,
A、∵2×3=6,
∴点(2,3)在反比例函数图象上,故本选项正确;
B、∵1×4=4≠6,
∴点(1,4)不在反比例函数图象上,故本选项错误;
C、∵-2×3=-6≠6,
∴点(-2,3)不在反比例函数图象上,故本选项错误;
D、∵-1×4=-4≠6,
∴点(-1,4)不在反比例函数图象上,故本选项错误.
故选:A.
本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
6、D
【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】
A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
7、A
【解析】
解:B.摸奖活动中奖是一个随机事件,因此,摸100次奖是否中奖也是随机事件;
C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件;
D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
故选A.
本题考查随机事件.
8、D
【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
【详解】
解:不等式,
解得x<,
由数轴可知,
所以,
解得;
故选:.
本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75千米/小时
【解析】
甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.
【详解】
解:甲返程的速度为:600÷(14−6)=75km/h,
设乙车的速度为x,
由题意得:600=7x+75,
解得:x=75,
故答案为75千米/小时.
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
10、m=1.
【解析】
分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
解得m≤5.5,且m≠5,
则m的最大整数解是m=1.
故答案为m=1.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
11、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
12、5
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
如图,
∵四边形ABCD是菱形,
∴OAAC=4,OBBD=3,AC⊥BD,
∴AB5
故答案为:5
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.
13、
【解析】
根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.
【详解】
解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°
∵∠E=120°
∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°
故答案为600°
本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)S=t2﹣2t+8(0<t<2);(3).
【解析】
由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,
(1)判断出AQ=AP,得出2t=4-t,即可;
(2)直接利用面积的和差即可得出结论;
(3)先判断 =,再得到,从而得出解方程即可得出结论.
【详解】
解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,
由运动知,DP=t,AQ=2t,
∴AP=4﹣t,BQ=4﹣2t,
(1)连接BD,如图1,
∵AB=AD,
∴∠ABD=∠ADB,
∵PQ∥BD,
∴∠ABD=∠AQP,∠APQ=∠ADB,
∴∠APQ=∠AQP,
∴AQ=AP,
∴2t=4﹣t,
∴t=;
(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ﹣S△CDP
=AB2﹣AQ×AP﹣BQ×BC﹣DP×CD
=16﹣×2t×(4﹣t)﹣×(4﹣2t)×4﹣t×4
=16+t2﹣4t﹣8+4t﹣2t
=t2﹣2t+8(0<t<2);
(3)如图2,
过点C作CN⊥PQ于N,
∴S△MCQ=MQ×CN,S△MCP=MP×CN,
∵S△QCM:S△PCM=3:5,
∴ = ,
∴,
过点M作MG⊥AB于G,MH⊥AD于H,
∵点M是正方形ABCD的对角线AC上的一点,
∴MG=MH,
∴S△AMQ=AQ×MG,S△APM=AP×MH,
∴
∴
∴t= .
四边形综合题,主要考查了正方形的性质,平行线的性质,同高的两三角形的面积比是底的比,方程思想,解本题的关键是用方程的思想解决问题.
15、(1);(2)2-1
【解析】
(1)首先计算二次根式的乘法,再计算二次根式的除法即可;
(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.
【详解】
解:(1)原式===×=×=;
(2)原式=1+2-4=2-1.
此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.
16、(1);(1)
【解析】
(1) 分别求出每个不等式的解集,再得出不等式组的解集即可;
(1) 根据分式混合运算顺序和运算法则计算可得.
【详解】
解:(1) 解不等式①得:x>−,
解不等式②,得: x>1,
则不等式组的解集为x>1.
(1)原式=
=
=
=
本题主要考查分式的混合运算和解一元一次不等式组的能力,解题的关键是掌握分式混合运算顺序和运算法则及解一元一次不等式组的能力.
17、(1)菱形; (2)
【解析】
(1)先根据四边形ABCD是平行四边形得出AD∥BC,再由AB=AF即可得出结论;
(2)先根据菱形的周长求出其边长,再由BF=1得出△ABF是等边三角形,据此可得出结论。
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AB=AF,
∴四边形ABEF是菱形.
故答案为:菱形
(2)∵四边形ABEF是菱形,且周长为40,
∴AB=AF=40÷4=1.
∵BF=1,
∴△ABF是等边三角形,
∴∠ABF=60°,
∴∠ABC=2∠ABF=120°;
故答案为:120°
本题考查的是作图-基本作图,熟知角平分线的作法及菱形的性质是解答此题的关键.
18、-5.
【解析】
括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.
【详解】
(+)÷
=
=
=,
当x=-1时,原式=-2-3=-5.
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=x+1.
【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
【详解】
气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
故答案为:y=x+1.
此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
20、1
【解析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
【详解】
解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.
本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
21、
【解析】
设矩形的宽是a,则长是2a,再根据勾股定理求出a的值即可.
【详解】
解:设矩形的宽是a,则长是2a,
对角线的长是5cm,
,
解得,
这个矩形的长,
故答案是:.
考查的是矩形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
22、(8,4)
【解析】
首先证明OA=BC=6,根据点C坐标即可推出点B坐标;
【详解】
解:∵A(6,0),
∴OA=6,
∵四边形OABC是平行四边形,
∴OA=BC=6,
∵C(2,4),
∴B(8,4),
故答案为(8,4).
本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.
23、1或
【解析】
分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
详解:去分母得:
x-3a=2a(x-3),
整理得:(1-2a)x=-3a,
当1-2a=0时,方程无解,故a=;
当1-2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为1或.
点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)1.5.
【解析】
(1)首先根据已知条件可判定四边形OCED是平行四边形,然后根据正方形对角线互相平分的性质,可判定四边形OCED是菱形,又根据正方形的对角线互相垂直,即可判定四边形OCED是正方形;
(2)首先连接EO,并延长EO交AB于点F,根据已知条件和(1)的结论,可判定EF即为点E到AB的距离,即为EO和OF之和,根据勾股定理,可求出AD和CD,即可得解.
【详解】
解:(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是正方形,
∴AC=BD, ,
∴OC=OD.
∴四边形OCED是菱形.
∵AC⊥BD,
∴∠COD=90°.
∴四边形OCED是正方形.
(2)解:连接EO,并延长EO交AB于点F,如图所示
由(1)中结论可得,OE=CD
又∵正方形ABCD,,AD=CD,OF⊥AB
∴
∴AD=CD=1,
∴
∴
EF即为点E到AB的距离,
故答案为1.5.
此题主要考查正方形的判定和利用正方形的性质求解线段的长度,熟练运用即可解题.
25、 (1)四边形是平行四边形;(2)且,证明见解析;(3)见解析.
【解析】
(1)根据平移的性质,可得PQ=BC=AD,根据一组对边平行且相等的四边形是平行四边形,可得答案;
(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;
(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得函数关系式.
【详解】
(1)根据平移的性质可得,PQ=BC,
∵四边形ABCD是正方形,
∴BC=AD,BC∥AD,
∴PQ=AD,PQ∥AD,
∴四边形是平行四边形.
(2)且.证明如下:
①当向右平移时,如图,
∵四边形是正方形,
∴,.
∵,∴.
∵,
∴,
∴
∴,
∴.
在和中,
∴,
∴,.
∵,
∴,即.
∴,
∴且.
②当向左平移时,如图,
同理可证,,
∴,,
∴,
∴,
∴,
∴且.
(3)过点作于.
在中,,
∴.
①当向右平移时,如图,
,
∴.
∵,
∴.
②当向左平移时,如图,
,
∴.
∵.
∴.
本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键.
26、;.
【解析】
直接将括号里面通分进而利用分式的混合运算法则计算得出答案.
【详解】
解:原式=,
当x=1时,
原式=.
本题考查的知识点是分式的混合运算——化简求值,熟练掌握分式的运算顺序以及运算法则是解此题的关键.
题号
一
二
三
四
五
总分
得分
河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份河南省郑州中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州一中汝州实验中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份河南省郑州一中汝州实验中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。