河南省驻马店市确山县2024年九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中是最简二次根式的是( )
A.B.C.D.
2、(4分)下列说法中正确的是( )
A.有一个角是直角的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直平分的四边形是正方形
D.两条对角线相等的菱形是正方形
3、(4分)下列四个二次根式中,是最简二次根式的是( )
A.B.C.D.
4、(4分)关于x的分式方程=1的解为正数,则字母a的取值范围为( )
A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1
5、(4分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()
A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误
6、(4分)在下列条件中,不能确定四边形ABCD为平行四边形的是( ).
A.∠A=∠C,∠B=∠DB.∠A+∠B=180°,∠C+∠D=180°
C.∠A+∠B=180°,∠B+∠C=180°D.∠A=∠B=∠C=90°
7、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
A.18cm2B.36cm2C.72cm2D.108cm2
8、(4分)若反比例函数y=(k≠0)的图象经过点P(﹣2,6),则k的值是( )
A.﹣3B.3C.12D.﹣12
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分解因式可分解为,则=______。
10、(4分)若多项式x2+mx+是一个多项式的平方,则m的值为_____
11、(4分)已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是 .
12、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
13、(4分)如图,菱形中,,点是直线上的一点.已知的面积为6,则线段的长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
15、(8分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.
(1)求证:;
(2)求证,四边形BCFD是平行四边形;
(3)若,,求四边形ADCF的面积.
16、(8分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.
17、(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,,连接AE,AF,EF,G为EF中点,连接AG,DG.
(1)如图1:若,,求DG;
(2)如图2:延长GD至M,使,过M作MN∥FD交AF的延长线于N,连接NG,若.求证:.
18、(10分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:
(1)m= ,在扇形统计图中分数为7的圆心角度数为 度.
(2)补全条形统计图,各组得分的中位数是 分,众数是 分.
(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.
20、(4分)如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.
21、(4分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D. 若∠BAC=40°,则AD弧的度数是___度.
22、(4分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
23、(4分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知平行四边形ABCD,
(1)= ;(用的式子表示)
(2)= ;(用的式子表示)
(3)若AC⊥BD,||=4,||=6,则|+|= .
25、(10分)某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
(1)求,两种型号电机的进价;
(2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
26、(12分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
(1)求该反比例函数的表达式;
(2)求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用最简二次根式的定义进行解题即可
【详解】
最简二次根式需满足两个条件:(1)被开放数的因数是整数,因式是整式;(2)被开方数中不含能开方的因数或因式
A选项不符合(2)
B选项不符合(2)
C选项满足两个条件
D选项不符合(2)
故选C
本题重点考察最简二次根式的判断,属于简单题型
2、D
【解析】
本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.
【详解】
A. 有一个角是直角的四边形是矩形,错误;
B. 两条对角线互相垂直的四边形是菱形,错误;
C. 两条对角线互相垂直平分的四边形是正方形,错误;
D. 两条对角线相等的菱形是正方形,正确.
故选D.
本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.
3、D
【解析】
根据最简二次根式的定义,可得答案.
【详解】
A. 被开方数含能开得尽方的因数=3,故A不符合题意;
B. 被开方数含分母,故B不符合题意;
C. 被开方数含能开得尽方的因数=2,故C不符合题意;
D. 被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;
故选:D
此题考查最简二次根式,解题关键在于掌握运算法则
4、B
【解析】
解:分式方程去分母得:2x-a=x+1,解得:x=a+1.
根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.
即字母a的取值范围为a>-1.故选B.
点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.
5、C
【解析】
试题分析:甲的作法正确:
∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.
∵MN是AC的垂直平分线,∴AO=CO.
在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,
∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.
∵AC⊥MN,∴四边形ANCM是菱形.
乙的作法正确:如图,
∵AD∥BC,∴∠1=∠2,∠2=∠1.
∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.
∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.
∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.
∵AB=AF,∴平行四边形ABEF是菱形.
故选C.
6、B
【解析】
根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.
【详解】
A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;
B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.
C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;
D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;
故选B.
7、D
【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
【详解】
根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
即A、B、C、D、E、F的面积之和为3个G的面积.
∵M的面积是61=36 cm1,
∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
故选D.
考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
8、D
【解析】
根据反比例函数y=(k≠0)的图象经过点P(﹣2,6),从而可以求得k的值.
【详解】
解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,6),
∴,得k=﹣12,
故选:D.
本题考查的是反比例函数,熟练掌握反比例函数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-7
【解析】
将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.
【详解】
(x+3)(x+n)=+(3+n)x+3n,
对比+mx-15,
得出:3n=﹣15,m=3+n,
则:n=﹣5,m=﹣2.
所以m+n=﹣2﹣5=﹣7.
本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.
10、±.
【解析】
根据完全平方公式的结构特征即可求出答案.
【详解】
解:∵x2+mx+=x2+mx+()2,
∴mx=±2××x,
解得m=±.
故答案为±.
本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
11、x<1
【解析】
利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.
【详解】
解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;
故答案为:x<1
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、3
【解析】
先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OB=OD,AD=BC=6
∵点E是CD的中点,
∴CE=DE,
∴OE是△BCD的中位线,
∵AD=6,
∴OE=AD=3.
故答案为:3
此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
13、
【解析】
作于,由菱形的性质得出,,由直角三角形的性质得出,由的面积,即,解得:即可.
【详解】
解:作于,如图所示:
四边形是菱形,
,,
,
,
的面积,
即,
解得:;
故答案为:.
本题考查了菱形的性质、三角形面积公式、含角的直角三角形的性质;熟练掌握菱形的性质,证出与的关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、m=-2,n=-2,B(1,-2).
【解析】
利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
【详解】
解:∵直线y=mx与双曲线相交于A(-1,2),
∴m=-2,n=-2,
∵A,B关于原点对称,
∴B(1,-2).
本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
15、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).
【解析】
(1)欲证明DE=EF,只要证明△AEF≌△CED即可;
(2)只要证明BC=DF,BC∥DF即可;
(3)只要证明AC⊥DF,求出DF、AC即可;
【详解】
(1)证明:∵,∴,
∵,,
∴,
∴.
(2)∵,,∴,,
∵,∴,
∴四边形BCFD是平行四边形.
(3)在中,,,
∴,,,
∴,
∵DE∥BC,∴,
∴,
∴.
本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16、证明见解析.
【解析】
由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE是平行四边形.从而得出结论BE=DF,
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF,
∴AD−AE=BC−CF,
∴ED=BF,
又∵AD//BC,
∴四边形BFDE是平行四边形,
∴BE=DF
此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键.
17、(1)DG=;(2),见解析.
【解析】
(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出,,,再由△AFE是等腰直角三角形,G是EF的中点,求出,证明△NGK≌△NGT(HL),则有TN=NK=MN+MK,∠ANG=30°,可求,得到=MN+NA.
【详解】
解:(1)取CF的中点H,连接GH,
∵BE=DF,AB=AD,∠ADF=∠B=90°,
∴△ABE≌△ADF(SAS),
∴AF=AE,
∵AB=3,BE=1,
∴AF=AE= ,CF=4,CE=2,
∴EF=2,
∴△AEF是等腰直角三角形,
∵G为EF中点,CF的中点H,
∴GH是Rt△EFC的中位线,
∴GH=CE=1,
∴FH=2,
∴DH=1,
∴DG=;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,
过点G作GT⊥AF,交AF于点T;
设BE=a,
在Rt△ABE中,∠BAE=30°,
∴AB=a,AE=2a,
∴CE=(-1)a,
∵DF=BE,
∴CF=(+1)a,
∵△AFE是等腰直角三角形,G是EF的中点,
∴AG=a,
∵G是EF中点,GQ⊥CF,
∴GQ=CE=a,
∴DQ=CD-CF=a,
∴GQ=DQ,
∴∠DGQ=45°,
∴GK=MK,
∴GM=GA,
∴GK=MK=a,
∵∠FAG=45°,
∴GT=a,
∴Rt△NGK≌Rt△NGT(HL),
∴TN=NK=MN+MK,
∠ANG=∠ANK,
∵∠BAE=30°,
∴∠NAD=30°,
∴∠ANK=60°,
∴∠ANG=30°,
,
,
,
,
即.
本题考查正方形的性质,三角形的性质;熟练掌握正方形的性质,三角形全等的判定定理和性质定理,特殊三角形的性质是解题的关键.
18、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.
【解析】
(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.
【详解】
(1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),
m%=×100%=25%,
×360°=54°,
故答案为:25,54;
(2)8分这一组的组数为5,如图所示:
各组得分的中位数是(7+6)=6.5,
分数为6分的组数最多,故众数为6;
故答案为:6.5,6;
(3)由题可得,×120=12(组),
∴该展演活动共产生了12个一等奖.
本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.
【详解】
解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);
1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),
∴众数与中位数的和是:150+150=1(度).
故答案为1.
本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.
20、AB的中点.
【解析】
若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.
【详解】
当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D为BC中点,
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=AB,
∴矩形APDQ为正方形,
故答案为AB的中点.
此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形
21、140
【解析】
首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得AD弧的度数.
【详解】
连接AD、OD,
∵AB为直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴∠BAD=∠CAD=∠BAC=20°,BD=DC,
∴∠ABD=70°,
∴∠AOD=140°
∴AD弧的度数为140°;故答案为140.
本题考查等腰三角形的性质和圆周角定理,解题的关键是掌握等腰三角形的性质和圆周角定理.
22、1或2
【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
【详解】
如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
∴△FDH≌△EDB
∴FH=BE,∠FHD=∠B=60°
在等边△BDH中∠DHB=60°
∴∠CHF=60°
∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
∴△CHM≌△DHM
∴CM=DM,
∵ CM=DM,CH=BH
∴ MH//BD,
∵CD⊥AB
∴MH⊥CD
∴∠CMF=90°
∴
∴
∴
BE==1
同理可证,当DF在CD左侧时
BE==2
综上所诉,BE=1或2
灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。
23、y=x+3
【解析】
因为一次函数y=kx+3的图象过点A(1,4),
所以k+3=4,
解得,k=1,
所以,该一次函数的解析式是:y=x+3,
故答案是:y=x+3
【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).
二、解答题(本大题共3个小题,共30分)
24、
【解析】
(1)(2)根据平面向量的加法法则计算即可解决问题;
(3)利用勾股定理计算即可;
【详解】
解:(1)= + =﹣;
(2)=+ =;
(3)∵AC⊥BD,||=4,||=6,
∴|+|=2 .
故答案为﹣,,2
此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则
25、(1)进价元,进价元;(2)购进型至少台
【解析】
(1) 设进价为元,则进价为元,根据元购进型电机的数量与用元购进型电机的数量相等,即可得出关于x的分式方程,解分式方程经检验后即可得出结论;
(2) 设购进型台,则购进型台,根据用不超过元的资金购进,两种型号的电机共台,即可得出关于y的一元一次不等式,解不等式即可得出结论.
【详解】
(1)解:设进价为元,则进价为元,
解得:
经检验是原分式方程的解
进价元,进价元.
(2)设购进型台,则购进型台.
购进型至少台.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,正确列出分式方程.
26、(1);(2).
【解析】
(1)根据,求出C点坐标,再根据为的中点,得到D点坐标,再用待定系数法即可求解函数解析式;
(2)先求出E点坐标,利用割补法即可求出的面积.
【详解】
解:(1)∵,,
∴.
∵为的中点,
∴.代入可得,
∴.
(2)将代入得,
∴.
∴矩形.
此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的应用.
题号
一
二
三
四
五
总分
得分
批阅人
河南省驻马店市遂平县2025届数学九上开学监测模拟试题【含答案】: 这是一份河南省驻马店市遂平县2025届数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省驻马店市泌阳县2024年数学九上开学复习检测模拟试题【含答案】: 这是一份河南省驻马店市泌阳县2024年数学九上开学复习检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省驻马店市2024年九上数学开学达标检测模拟试题【含答案】: 这是一份河南省驻马店市2024年九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。