河南省驻马店市西平五中学2025届九上数学开学质量跟踪监视试题【含答案】
展开
这是一份河南省驻马店市西平五中学2025届九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
A.B.C.D.
2、(4分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.,B.,
C.,D.,
3、(4分)如图,点,,在同一条直线上,正方形,正方形的边长分别为3,4,为线段的中点,则的长为( )
A.B.C.或D.
4、(4分)如图,已知一次函数,随着的增大而增大,且,则在直角坐标系中它的图象大致是( )
A.B.C.D.
5、(4分)一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
6、(4分)若分式有意义,则的取值范围为( )
A.B.C.D.
7、(4分)如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论中错误的是( )
A.k<0B.a>0C.b>0D.方程kx+b=x+a的解是x=3
8、(4分)在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )
A.a=9 b=41 c=40B.a=b=5 c=5
C.a:b:c=3:4:5D.a=11 b=12 c=15
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
10、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________
11、(4分)如果是关于的方程的增根,那么实数的值为__________
12、(4分)已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.
13、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类。学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图。
请你结合图中信息,解答下列问题:
(1)本次共调查了___名学生;
(2)被调查的学生中,最喜爱丁类图书的有___人,最喜爱甲类图书的人数占本次被调查人数的___%;
(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人。
15、(8分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?
16、(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?
17、(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,
求证:四边形OCED是菱形.
18、(10分)已知一次函数.
(1)在平面直角坐标系中画出该函数的图象;
(2)点(,5)在该函数图象的上方还是下方?请做出判断并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.
20、(4分)设函数与的图象的交点坐标为,则的值为__________.
21、(4分)如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.
22、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
23、(4分)已知,则______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).
(1)点B的坐标是 ,点B与点A的位置关系是 .现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;
(2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;
(3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是 ,并在图中画出这条直线.
25、(10分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(公里)与甲车行驶时间(小时)之间的函数关系如图,请根据所给图象关系解答下列问题:
(1)求甲、乙两车的行驶速度;
(2)求乙车出发1.5小时后,两车距离多少公里?
(3)求乙车出发多少小时后,两车相遇?
26、(12分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:
(1)请填表中未完成的部分;
(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?
(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
【详解】
解:∵BE⊥AC,CD⊥AC,
∴∠ACD=∠BEA=90°,
∴∠CDB+∠DCA=90°,
又∵∠DAB=∠DAC+∠BAC=90°
在△ACD和△AEB中,
∴△ACD≌△BEA(AAS)
∴AC=BE
∵△ABC的面积为8,
∴,
解得BE=4,
在Rt△ABE中,
.
故选择:A.
本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
2、B
【解析】
根据平行四边形的判定方法,对每个选项进行筛选可得答案.
【详解】
A、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故A选项不符合题意;
B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;
C、∵AD//BC,AD=BC,
∴四边形ABCD是平行四边形,故C选项不符合题意;
D、∵AB∥CD,
∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
又∵∠BAD=∠BCD,
∴∠ABC=∠ADC,
∵∠BAD=∠BCD,∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故D选项不符合题意,
故选B.
本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
3、D
【解析】
连接BD、BF,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD、BF和DF,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH.
【详解】
如图,连接BD、BF,
∵四边形ABCD和四边形BEFG都是正方形,
∴AB=AD=3,BE=EF=4,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,
∴∠DBF=90°,BD=3,BF=4,
∴在Rt△BDF中,DF==,
∵H为线段DF的中点,
∴BH=DF=.
故选:D.
本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.
4、A
【解析】
首先根据一次函数的增减性确定k的符号,然后根据确定b的符号,从而根据一次函数的性质确定其图形的位置即可.
【详解】
∵随的增大而增大,
∴.
又∵,
∴,
∴一次函数过第一、三、四象限,
故选A.
本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限是解答此题的关键.
5、C
【解析】
根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴商家更应该关注鞋子尺码的众数.
故选C.
本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、A
【解析】
直接利用分式有意义的条件即分母不为零,进而得出答案.
【详解】
解:∵分式有意义,
∴x+1≠0,
解得:x≠-1.
故选A.
此题主要考查了分式有意义的条件,正确把握定义是解题关键.
7、B
【解析】
根据一次函数的性质对ABC选项进行判断;利用一次函数与一元一次方程的关系对D项进行判断.
【详解】
∵一次函数y1=kx+b经过第一、二、三象限,
∴k<0,b>0,所以A、C正确;
∵直线y2=x+a的图象与y轴的交点在x轴的下方,
∴a<0,所以B错误;
∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,
∴x=3时,kx+b=x+a,所以D正确.
故选B.
本题考查了一次函数与一元一次不等式.从函数的角度看,就是寻求使一次y=kx+b的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
8、D
【解析】
根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.
【详解】
解:A、因为92+402=412,故能构成直角三角形;
B、因为52+52=(5)2,故能构成直角三角形;
C、因为32+42=52,故能构成直角三角形;
D、因为112+122≠152,故不能构成直角三角形;
故选:D.
本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:将88300000用科学记数法表示为:.
故答案为:.
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
10、
【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、 AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.
【详解】
解:如图所示,
∵∠ABC=90°,∠A=30°,AB=5,
∴设BC=x,则AC=2x
∵
∴
∴x=5
∴BC=5,AC=10
在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线
∴
∴△ADB的周长为:
故答案为:
本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.
11、1
【解析】
分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.
【详解】
去分母得:x+2=k+x2-1,
把x=2代入得:k=1,
故答案为:1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
12、1.
【解析】
根据平均数的定义列出方程,解方程可得.
【详解】
∵数据6、4、a、3、2的平均数是5,
∴,
解得:a=1,
故答案为:1.
本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.
13、m
相关试卷
这是一份河南省长垣县2025届九上数学开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份河南省商丘市柘城中学2024年九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省平顶山2024年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。