![河南周口港区2024年数学九上开学预测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16276845/0-1729559794789/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南周口港区2024年数学九上开学预测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16276845/0-1729559794872/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南周口港区2024年数学九上开学预测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16276845/0-1729559794902/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河南周口港区2024年数学九上开学预测试题【含答案】
展开
这是一份河南周口港区2024年数学九上开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题正确的是( )
A.有一个角是直角的四边形是矩形
B.对角线互相垂直的平行四边形是菱形
C.对角线相等且互相垂直的四边形是正方形
D.平行四边形的对角线相等
2、(4分)如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为( )
A.2B.4C.6D.8
3、(4分)如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是( )
A.B.
C.D.
4、(4分)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为( )
A.6cmB.8cmC.5cmD.4cm
5、(4分)如图,中,、分别是、的中点,平分,交于点,若,则的长是
A.3B.2C.D.4
6、(4分)矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为( )
A.20 B.56 C.192 D.以上答案都不对
7、(4分)将一次函数y=﹣3x﹣2的图象向上平移4个单位长度后,图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、(4分)顺次连接四边形各边中点所得到的四边形是菱形,则四边形必须满足的条件是( )
A.对角线互相垂直B.对角线相等
C.一组邻边相等D.一个内角是直角
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
10、(4分)直线与轴的交点坐标是________________.
11、(4分)已知一次函数的图像经过点,那么这个一次函数在轴上的截距为__________.
12、(4分)如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.
13、(4分)从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,以△ABC的三边AB、BC、CA在BC的同侧作等边△ABD、△BCE、△CAF,请说明:四边形ADEF为平行四边形.
15、(8分)因式分解:
(1);
(2).
16、(8分)直线MN与x轴、y轴分别交于点M、N,并且经过第二、三、四象限,与反比例函数y=(k<0)的图象交于点A、B,过A、B两点分别向x轴、y轴作垂线,垂足为C、D、E、F,AD与BF交于G点.
(1)比较大小:S矩形ACOD S矩形BEOF(填“>,=,<”).
(2)求证:①AG•GE=BF•BG;
②AM=BN;
(3)若直线AB的解析式为y=﹣2x﹣2,且AB=3MN,则k的值为 .
17、(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
18、(10分)定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;
(1)若,求点的“等边对称点”的坐标;
(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,
①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;
②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:
那么,不等式mx+n<0的解集是_____.
20、(4分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.
21、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
22、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
23、(4分)如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距,现在乘高铁列车比以前乘特快列车少用,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.
25、(10分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
26、(12分)如图,正方形网格中的每个小正方形边长都是,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.
(1)在图①中,画一个三角形,使它的三边长都是有理数;
图①
(2)在图②中,画一个直角三角形,使它们的三边长都是无理数.
图②
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用矩形的判定、菱形的判定及正方形的判定方法分别判断后即可确定正确的选项.
【详解】
解:A、有一个角是直角的平行四边形是矩形,故错误;
B、对角线互相垂直的平行四边形是菱形,故正确;
C、对角线互相垂直平分且相等的平行四边形是正方形,故错误;
D、平行四边形的对角线互相平分但不一定相等,故错误.
故选:B.
本题考查命题与定理的知识,解题的关键是能够了解矩形的判定、菱形的判定及正方形的判定方法,难度不大.
2、D
【解析】
根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.
【详解】
解:∵点, ∴,
则,
由题意得,,
整理得,,
∵点在反比例函数上, ∴,
解得,, 则,
故选:D.
本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.
3、D
【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D
【详解】
解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;
当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.
本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.
4、D
【解析】
根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.
【详解】
根据折叠前后角相等可知∠DCA=∠ACO,
∵四边形ABCD是矩形,
∴AB∥CD,AD=BC=4cm,
∴∠DCA=∠CAO,
∴∠ACO=∠CAO,
∴AO=CO,
在直角三角形BCO中,CO= =5cm,
∴AB=CD=AO+BO=3+5=8cm,
在Rt△ABC中,AC=cm,
故选:D.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
5、A
【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.
【详解】
在中,、分别是、的中点,
,
,
平分,
.
.
.
在中,,
,
.
故选.
本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
6、C
【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.
详解:∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为20,
∴(3x)2+(4x)2=202,
解得:x=2,
∴矩形的两邻边长分别为:12,16;
∴矩形的面积为:12×16=1.
故选:C.
点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.
7、C
【解析】
画出平移前后的函数图像,即可直观的确定答案.
【详解】
解:如图:平移后函数图像不经过第三象限,即答案为C.
本题考查了函数图像的平移,作图法是一种比较好的解题方法.
8、A
【解析】
首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.
【详解】
如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,
∴EF=FG=GH=EH,BD=2EF,AC=2FG,
∴BD=AC.
∴原四边形一定是对角线相等的四边形.
故选B.
本题考查中点四边形,熟练掌握中位线的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
解:由图象可知:当x>1时,.故答案为:x>1.
10、
【解析】
根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.
【详解】
根据题意,得
当时,,
即与轴的交点坐标是
故答案为.
此题主要考查一次函数的性质,熟练掌握,即可解题.
11、1
【解析】
先将代入中求出m的值,然后令求出y的值即可.
【详解】
∵一次函数的图像经过点,
∴,
解得,
∴.
令,则,
∴一次函数在轴上的截距为1.
故答案为:1.
本题主要考查待定系数法求一次函数的解析式,能够求出一次函数的解析式是解题的关键.
12、
【解析】
根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第2019个菱形的边长.
【详解】
连接DB交AC于M点,
∵四边形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM=,
∴AC=2AM=,
同理可得AC1=AC=()2,AC2=AC1=3=()3,
按此规律所作的第n个菱形的边长为()n-1,
当n=2019时,第2019个菱形的边长为()2018,
故答案为.
本题考查了菱形的性质、含30°角的直角三角形的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.
13、②
【解析】
根据可能性等于所求情况与总数情况之比即可解题.
【详解】
解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是 ,
这张牌是“红心”的概率是,
这张牌是“大王”的概率是,
∴其中发生的可能性最大的事件是②.
本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
分析:由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.
本题解析:
证明:∵△ABD,△EBC都是等边三角形,
∴AD=BD=AB,BC=BE=EC,
∠DBA=∠EBC=60°,
∴∠DBE+∠EBA=∠ABC+∠EBA,
∴∠DBE=∠ABC,
在△DBE和△ABC中,∵ ,
∴△DBE≌△ABC(SAS),
∴DE=AC,
又∵△ACF是等边三角形,
∴AC=AF,
∴DE=AF,
同理可证:AD=EF,
∴四边形ADEF是平行四边形.
15、(1);(2)
【解析】
(1)先提取公因式-x,再用完全平方公式分解即可;
(2)先提取公因式3x,再用完全平方公式分解即可.
【详解】
解:(1)
=
=;
(2)
=
=
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、(1)=;(2)①见解析,②见解析;(3)﹣1.
【解析】
(1)根据反比例函数的比例系数的几何意义即可作出判断;
(2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),利用a、b表示出AG、GE、BF、BG的长,即可证得;
②求得直线AB的解析式,即可求得M的坐标,即可证明CM=BF,即可证得△ACM≌△NFB,根据全等三角形的对应边相等,即可证得;
(3)根据AM=BN,且AB=3MN,可以得到AM=BN=MN,则OF=2ON,OM=BF,在y=﹣2x﹣2中,求得M、N的坐标,即可求得B的坐标,代入反比例函数解析式即可求得k的值.
【详解】
(1)根据反比例函数k的几何意义可得:S矩形ACOD=S矩形BEOF=|k|,
故答案为:=;
(2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),
则AG=b﹣a,GE=,BF=b,BG=﹣,
则AG•GE=(b﹣a)•=,
BF•BG=b(﹣)=,
∴AG•GE=BF•BG;
②设过A、B的直线的解析式是y=mx+n,则,
解得:,
则函数的解析式是:y=﹣x+,
令y=0,解得:x=a+b,
则M的横坐标是a+b,
∴CM=a+b﹣a=b,
∴CM=BF,
则△ACM≌△NFB,
∴AM=BN;
(3)∵AM=BN,且AB=3MN,
∴AM=BN=MN,
∴ON=NF,
在y=﹣2x﹣2中,令x=0,解得:y=﹣2,
则ON=2,
令y=0,解得:x=﹣1,则OM=1,
∴OF=2ON=1,OM=BF=1
∴B的坐标是(1,﹣1),
把(1,﹣1)代入y=中,得:k=﹣1,
故答案为:﹣1.
本题考查的是反比例函数与几何综合题,涉及了反比例函数k的几何意义,待定系数法,全等三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
17、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
【详解】
(1)设购买A型号的x台,购买B型号的为(10﹣x)台,
则:12x+10(10﹣x)≤110,
解得:x≤5,
答:A型设备最多购买5台;
(2)设购买A型号的a台,购买B型号的为(10﹣a)台,
可得:240a+180(10﹣a)≥2040,
解得:a≥4,
∴A型设备至少要购买4台.
本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
18、(1)或;(2)①;②或
【解析】
(1)根据P点坐标得出P'的坐标,可求PP'=4;设C(m,n),有PC=P'C=24,通过解方程即可得出结论;
(2)①设P(c,),得出P'的坐标,利用连点间的距离公式可求的长,设C(s,t),有,然后通过解方程可得,再根据消元c即可得xy=-6;
②分AG为平行四边形的边和AG为平行四边形的对角线两种情况进行分类讨论.
【详解】
解:(1)∵P(1,),
∴P'(-1,-),
∴PP'=4,
设C(m,n),
∴等边△PP′C,
∴PC=P'C=4,
解得n=或-,
∴m=-1或m=1.
如图1,观察点C位于第四象限,则C(,-1).即点P的“等边对称点”的坐标是(,-1).
(2)①设,∴,
∴,
设,
,
∴,
∴,
∴,
∴,
∴或,
∴点在第四象限,,
∴,
令,
∴,即;
②已知,,则直线为,设点,设点,,即,,,构成平行四边形,点在线段上,;
当为对角线时,平行四边形对角坐标之和相等;
,,,即;
当为边时,平行四边形,
,,,即;
当为边时,平行四边形,
,,,而点在第三象限,,即此时点不存在;
综上,或.
本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C的坐标是关键,数形结合解题是求yc范围的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<﹣1
【解析】
由表格得到函数的增减性后,再得出时,对应的的值即可.
【详解】
当时,,
根据表可以知道函数值随的增大而增大,
故不等式的解集是.
故答案为:.
此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间联系.理解一次函数的增减性是解决本题的关键.
20、8.1.
【解析】
直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AB=CD=3,
∵AC=4,BD=7,
∴AO=2,OB=,
∴△ABO的周长=AO+OB+AB=2++3=8.1.
故答案为:8.1.
此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.
21、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
22、1.
【解析】
试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
解:在菱形ABCD中,OB=OD,
∵E为AB的中点,
∴OE是△ABD的中位线,
∵OE=3,
∴AD=2OE=2×3=6,
∴菱形ABCD的周长为4×6=1.
故答案为1.
考点:菱形的性质.
23、
【解析】
根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.
【详解】
解:∵当时,随着的增大而增大,
∴反比例函数图象在第四象限有一支,
∴,解得,
故答案为:.
本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
二、解答题(本大题共3个小题,共30分)
24、高铁列车平均速度为.
【解析】
设特快列车平均速度为,则高铁列车平均速度为,根据现在乘高铁列车比以前乘特快列车少用 列方程求解即可.
【详解】
设特快列车平均速度为,则高铁列车平均速度为,
由题意得:,
解得:,
经检验:是原方程的解,
则;
答:高铁列车平均速度为.
本题是分式方程的应用,属于行程问题;两类车:高铁和特快,路程都是,高铁列车的平均速度是特快列车的倍,时间相差,根据速度的关系设未知数,根据时间的关系列方程,注意分式方程要检验.
25、 (1) 八(1)班的优秀率为,八(2)班的优秀率为 八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖
【解析】
(1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;
(2)直接根据表中信息,分析即可.
【详解】
(1)八(1)班的优秀率为,八(2)班的优秀率为
∵八(1)班的成绩由低到高排列为139,148,150,153,160
八(2)班的成绩由低到高排列为139,145,147,150,169
∴八(1),八(2)班的中位数分别为150,147
(2)八(1)班获冠军奖.
理由:从优秀率看,八(1)班的优秀人数多;
从中位数来看,八(1)班较大,一般水平较高;
从方差来看,八(1)班的成绩也比八(2)班的稳定
∴八(1)班获冠军奖.
此题主要考查数据的处理,熟练掌握,即可解题.
26、(1)见解析;(2)见解析
【解析】
(1)画一个边长为3、4、5的直角三角形即可;
(2)画一个边长为、2、的直角三角形即可.
【详解】
解:(1)三边分别是3、4、5,如下图:
(2)三边分别是、2、,如下图:
故答案:(1)图形见解析;(2)图形见解析.
本题考查了有理数、无理数、勾股定理.
题号
一
二
三
四
五
总分
得分
批阅人
x
﹣2
﹣1
0
1
2
3
y
﹣1
0
1
2
3
4
1号
2号
3号
4号
5号
平均数
方差
八(1)班
139
148
150
160
153
150
46.8
八(5)班
150
139
145
147
169
150
103.2
相关试卷
这是一份河南周口地区洪山乡联合学校2025届数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省周口市淮阳县2024-2025学年数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省周口市川汇区2025届数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。