黑龙江齐齐哈尔市泰来县2024年九年级数学第一学期开学达标测试试题【含答案】
展开这是一份黑龙江齐齐哈尔市泰来县2024年九年级数学第一学期开学达标测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )
A. B.
C. D.
2、(4分)如图,一次函数的图象经过、两点,则不等式的解集是( )
A.B.C.D.
3、(4分)如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是( )
A.22.5°B.30°C.45°D.67.5°
4、(4分)矩形OABC在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
5、(4分)某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )
A.50,8B.50,50C.49,50D.49,8
6、(4分)已知点,,都在直线y=−3x+b上,则的值的大小关系是( )
A.B.C.D.
7、(4分)若式子在实数范围内有意义,则x的取值范围是( )
A.x≥B.x>C.x≥D.x>
8、(4分)如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为( )
A.B.5C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
10、(4分)如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.
11、(4分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.
①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.
则正确的排序为________ (填序号)
12、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
13、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简求值:,其中;
15、(8分)学校组织八年级350名学生参加“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1)求a和b的值;
(2)请补全频数分布直方图。
16、(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.
(1)线段的长度为__________;
(2)求直线所对应的函数解析式;
(3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
17、(10分)如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.
(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.
(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
18、(10分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程(米)与小明出发的时间(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;
(2)求小亮跑步的速度及小亮在途中等候小明的时间;
(3)求小亮出发多长时间第一次与小明相遇?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.
20、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
21、(4分)已知反比例函数,若,且,则的取值范围是_____.
22、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.
23、(4分) 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)本次调查的学生人数为__________,娱乐节目在扇形统计图中所占圆心角的度数是__________度.
(2)请将条形统计图补充完整:
(3)若该中学有2000名学生,请估计该校喜爱动画节目的人数.
25、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.
(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
26、(12分)《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,其中的一个比赛环节“飞花令”增加了节目悬念.新学期开学,某班组织了甲、乙两组同学进行了“飞花令”的对抗赛,规定说对一首得1分,比赛中有一方说出9首就结束两个人对抗,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
甲组:9,4,6,5,9,6,7,6,8,6,9,5,7,6,9
乙组:4,6,7,6,7,9,7,5,8,7,6,7,9,6,8
(1)请你根据所给的两组数据,绘制统计图(表).
(2)把下面的表格补充完整.
(3)根据第(2)题表中数据,你会支持哪一组,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C
2、A
【解析】
由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.
【详解】
解:∵一次函数y=kx+b的图象经过A、B两点,
由图象可知:B(1,0),
根据图象当x>1时,y<0,
即:不等式kx+b<0的解集是x>1.
故选:A.
本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.
3、A
【解析】
解:∵四边形ABCD是正方形,
∴∠ACB=45°,
∴∠E+∠∠FAC=∠ACB=45°,
∵CE=CA,
∴∠E=∠FAC,
∴∠FAC=∠ACB=22.5°.
故选A.
4、D
【解析】
①根据矩形的性质即可得到;故①正确;
②由点D为OA的中点,得到,根据勾股定理即可得到,故②正确;
③如图,过点P作于F,FP的延长线交BC于E,,则,根据三角函数的定义得到,求得,根据相似三角形的性质得到,根据三角函数的定义得到,故③正确;
④当为等腰三角形时,Ⅰ、,解直角三角形得到,
Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;
Ⅲ、,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;于是得到当为等腰三角形时,点D的坐标为.故④正确.
【详解】
解:①∵四边形OABC是矩形,,
;故①正确;
②∵点D为OA的中点,
,
,故②正确;
③如图,过点P作 A于F,FP的延长线交BC于E,
,四边形OFEC是矩形,
,
设,则,
在中,,
,
,
,
,
,
,
,
,
,
,
,
,
,故③正确;
④,四边形OABC是矩形,
,
,
,
当为等腰三角形时,
Ⅰ、
Ⅱ、
,
,故不合题意舍去;
Ⅲ、,
,
故不合题意舍去,
∴当为等腰三角形时,点D的坐标为.故④正确,
故选:D.
考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.
5、B
【解析】
把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.
【详解】
解:要求一组数据的中位数,
把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,
所以中位数是50,
在这组数据中出现次数最多的是50,
即众数是50,
故选:B.
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
6、A
【解析】
先根据直线y=-3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
∵直线y=−3x+b,k=−3<0,
∴y随x的增大而减小,
又∵−2<−1<1,
.
故选:.
本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数图象.
7、A
【解析】
根据:二次根式的被开方数必须大于或等于0,才有意义.
【详解】
若式子在实数范围内有意义,则2x-3≥0,即x≥.
故选A
本题考核知识点:二次根式有意义问题.解题关键点:熟记二次根式有意义条件.
8、C
【解析】
如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.
【详解】
如图,连接BE、BF.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=5,
∵AE=1,CF=2,
∴DE=4,DF=3,
∴EF==5,
∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,
∴•5•BG=25-•5•1-•5•2-•3•4,
∴BG=,
故选C.
本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
10、60°
【解析】
根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.
【详解】
由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,
∴等腰梯形的较大内角为360°÷3=120°,
∵等腰梯形的两底平行,
∴等腰梯形的底角(指锐角)是:180°-120°=60°.
故答案是:60°.
本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.
11、②①④⑤③
【解析】
根据统计调查的一般过程: ①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为: ②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为: ②①④⑤③.
12、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
13、9
【解析】
根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
【详解】
∵BF平分∠ABC,∴∠ABD=∠GBD,
∵AG⊥BF,∴∠BDG=∠BDA,
又BD=BD,∴△ABD≌△GBD
∴BG=AB=4cm,AD=GD,
故D为AG中点,又E为AC中点
∴GC=2DE=5cm,
∴BC=BG+GC=9cm.
此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
三、解答题(本大题共5个小题,共48分)
14、,-4
【解析】
首先通过约分和通分来达到简化分式的目的,然后将代入即可.
【详解】
原式
当时
原式
.
此题主要考查分式的化简求值,熟练掌握,即可解题.
15、(1)18,0.18;(2)见解析
【解析】
(1)根据第一组的人数是2,对应的频率是0.04即可求得总人数,然后根据频率的公式即可求得;
(2)根据(1)即可补全直方图;
【详解】
(1)抽取的总人数是2÷0.04=50(人),
a=50×0.36=18,b==0.18;
故答案是:18,0.18;
(2)
此题考查频数(率)分布表,频数(率)分布直方图,解题关键在于看懂图中数据.
16、(1)1;(2);(3)
【解析】
(1)根据勾股定理即可解决问题;
(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=1,可得OE=OB-BE=1-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;
(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题。
【详解】
解:(1)在Rt△ABC中,∵OA=12,AB=9,
故答案为1.
(2)如图,
设,则
根据轴对称的性质,,
又,
∴,
在中,,
即,则,
∴,
∴
设直线所对应的函数表达式为:
则,
解得
∴直线所对应的函数表达式为:.
故答案为:
(3)过点作交于点,过点作交于点,则四边形是平行四边形,再过点作于点,
由
得,即点的纵坐标为,
又点在直线:上,
∴,解得,
由于,所以可设直线,
∵在直线上
∴,解得
∴直线为,
令,则,解得,
∴
本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.
17、(1)AP+PQ的最小值为1;(2)存在,M点坐标为(﹣12,﹣1)或(12,8).
【解析】
(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=1,C点坐标为(1,1)DB=∠CEB=90,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=15,同弧所对圆周角相等可知∠CED=15,所以∠OEF=15,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.
(2)由直线l与直线AC成15可知∠AMN=15,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.
【详解】
解:(1)过A点作AK⊥CE,
在等腰直角△ABC中,∠ACB=90,AC=BC,
∵CE⊥x轴,
∴∠ACK+∠ECB=90,∠ECB+∠CBE=90,
∴∠ACK=∠CBE
在△AKC和△CEB中,
,
△AKC≌△CEB(AAS)
∴AK=CE,CK=BE,
∵四边形AOEK是矩形,
∴AO=EK=BE,
由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A 点坐标为(0,2),B(6,0)
∴E点坐标为(1,0),C点坐标为(1,1),
∵∠CDB=∠CEB=90,
∴B、C、D、E四点共圆,
∵,∠CBA=15,
∴∠CED=15,
∴FE平分∠CEO,
过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.
∴PH=PQ,
∵PA+PQ=PA+PH≥AK=OE,
∴OE=1,
∴AP+PQ≥1,
∴AP+PQ的最小值为1.
(2)∵A 点坐标为(0,2),C点坐标为(1,1),
设直线AC解析式为:y=kx+b
把(0,2),(1,1)代入得
解得
∴直线AC解析式为:y=,
设M点坐标为(x,),N坐标为(0,y).
∵MN∥AB,∠CAB=15,
∴∠CMN=15,
△CMN为等腰直角三角形有两种情况:
Ⅰ.如解图2﹣1,∠MNC=90,MN=CN.
同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS=NR.
∴,解得:,
∴M点坐标为(﹣12,﹣1)
Ⅱ.如解图2﹣2,∠MNC=90,MN=CN.
过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.
∴,解得:,
∴M点坐标为(12,8)
综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣1)或(12,8).
本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.
18、(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.
【解析】
(1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;
(2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;
(3)设小亮出发t秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.
【详解】
解:(1)由图象可得,
在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,
故答案为900,1.5;
(2)当x=500时,y=1.5×500=750,
当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),
故小亮的速度为:750÷(400﹣100)=2.5米/秒,
小亮在途中等候小明的时间是:500﹣400=100(秒),
即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;
(3)设小亮出发t秒时第一次与小明相遇,
2.5t=1.5(t+100),
解得,t=150,
答:小亮出发150秒时第一次与小明相遇.
一元一次方程和一次函数在实际生活中的应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.
【详解】
由题意,得
当时,
;
当时,
,
∴,
故答案为:.
本题考查了分段函数的运用,解答时求出函数的解析式是关键.
20、1.
【解析】
延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.
【详解】
如图所示,延长CM交AB于G,延长CN交AB于H,
∵∠ACB=90°,AC=6,BC=8,
∴由勾股定理得AB=10,
在△BMC和△BMG中,
,
∴△BMC≌△BMG,
∴BG=BC=8,CM=MG,
∴AG=1,
同理,AH=AC=6,CN=NH,
∴GH=4,
∵CM=MG,CN=NH,
∴MN=GH=1.
故答案为:1.
本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.
21、或
【解析】
利用反比例函数增减性分析得出答案.
【详解】
解:且,
时,,
在第三象限内,随的增大而减小,
;
当时,,在第一象限内,随的增大而减小,
则,
故的取值范围是:或.
故答案为:或.
此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.
22、上 1
【解析】
根据“上加下减”的平移规律解答即可.
【详解】
解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,
即y=3x,该函数图象经过原点.
故答案为上,1.
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.
23、1
【解析】
根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.
【详解】
解:∵将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,
∴新数据的方差是4×4=1,
故答案为:1.
本题考查了方差:一般地设有n个数据,x1,x2,…xn,若每个数据都扩大相同的倍数后,方差则变为这个倍数的平方倍.
二、解答题(本大题共3个小题,共30分)
24、 (1) 300,72°;(2)详见解析;(3)600.
【解析】
(1)从条形统计图中可得到“A”人数为69人,从扇形统计图中可得此部分占调查人数的23%,可求出调查人数;娱乐节目所对应的圆心角的度数占360°的20%,(2)求出“B”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中喜欢动画节目的百分比,去估计总体所占的百分比,用总人数去乘这个百分比即可.
【详解】
解:(1)人,,
故答案为:300,72°.
(2)人,补全条形统计图如图所示;
(3)人,
答:该中学有2000名学生中,喜爱动画节目大约有600人.
考查条形统计图、扇形统计图的特点和制作方法,理解统计图中各个数据之间的关系是解决问题的关键,将两个统计图联系起来寻找数据之间的关系是常用的方法之一.
25、解:(1)①△A1B1C1如图所示;
②△A1B1C1如图所示.
(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).
【解析】
试题分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可.
②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可.
(1)连接B1B1,C1C1,交点就是对称中心M.
26、(1)详见解析;(2)6.8;(3)答案不唯一,如:两组都支持,理由是:甲乙两组平均数一样.
【解析】
(1)根据题意可把数据整理成统计表;
(2)根据平均数和中位数的性质进行计算即可.
(3)根据比较平均数的大小,即可解答.
【详解】
(1)答案不唯一,如统计表
(2)甲组平均数: =6.8
乙组的中位数为:7.
(3)两组都支持,理由是:甲乙两组平均数一样.
此题考查统计表,平均数,中位数,解题关键在于看懂图中数据.
题号
一
二
三
四
五
总分
得分
成绩x/分
频数
频率
50≤x<60
2
0.04
60≤x<70
6
0.12
70≤x<80
9
b
80≤x<90
a
0.36
90≤x≤100
15
0.30
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
86.7%
13.3%
成绩(分)
4
5
6
7
8
9
甲组(人)
1
2
5
2
1
4
乙组(人)
1
1
4
5
2
2
统计量
平均分(分)
方差(分2)
中位数(分)
合格率
优秀率
甲组
6.8
2.56
6
80.0%
26.7%
乙组
6.8
1.76
7
86.7%
13.3%
相关试卷
这是一份2025届黑龙江省齐齐哈尔市龙江县数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省齐齐哈尔市龙沙区九年级数学第一学期开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江齐齐哈尔市泰来县九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。