|试卷下载
终身会员
搜索
    上传资料 赚现金
    黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】
    立即下载
    加入资料篮
    黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】01
    黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】02
    黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】

    展开
    这是一份黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是( )
    A.a<b<cB.c<a<bC.a<c<bD.b<a<c
    2、(4分)下列方程中是关于的一元二次方程的是( )
    A.B.C.D.
    3、(4分)分式有意义,则的取值范围是( )
    A.B.C.D.
    4、(4分)某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足( )
    A.B.
    C.D.
    5、(4分)要使式子有意义,则x的取值范围是( )
    A.x>1B.x>﹣1C.x≥1D.x≥﹣1
    6、(4分)如图所示,在矩形纸片中,,,折叠纸片使边与对角线重合,点落在点处,折痕为,则的长为( )
    A.B.C.D.
    7、(4分)如图,直线过点和点,则方程的解是( )
    A.B.C.D.
    8、(4分)下列式子是分式的是( )
    A.B.C.x2yD.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
    10、(4分)命题“等腰三角形两底角相等”的逆命题是_______
    11、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.
    12、(4分)我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.
    13、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
    (1)在图①中,画出以点A为顶点的非特殊的平行四边形.
    (2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.
    15、(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.
    (1)求证:四边形DFCE是菱形;
    (2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.
    16、(8分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
    (1)求△ABC的面积是____;
    (2)求直线AB的表达式;
    (3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
    (4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
    17、(10分)如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.
    (1)求直线和双曲线的解析式;
    (2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;
    (3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.
    ①求直线的解析式;
    ②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.
    18、(10分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,
    求:(1)DF的长;(2)重叠部分△DEF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°, PD⊥OA,M是OP的中点, DM=4cm,如果点C是OB上一个动点,则PC的最小值为________cm.
    20、(4分)分式和的最简公分母是__________.
    21、(4分)根据图中的程序,当输入x=2时,输出结果y=________.
    22、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
    23、(4分)若八个数据x1, x2, x3, ……x8, 的平均数为8,方差为1,增加一个数据8后所得的九个数据x1, x2, x3, …x8;8的平均数________8,方差为S2 ________1.(填“>”、“=”、“<”)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
    若,,依题意补全图1,并直接写出的度数;
    如图2,若是钝角,求的度数用含,的式子表示;
    如图3,若,直接写出的度数用含,的式子表示.
    25、(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
    该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
    (1)该商场计划购进A,B两种品牌的教学设备各多少套?
    (2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
    26、(12分) “扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
    (1)接受问卷调查的学生共有_______人,扇形统计图中“很了解”部分所对应扇形的圆心角为_______;
    (2)请补全条形统计图;
    (3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.
    【详解】
    解:由图可得,y随x的增大而减小,
    ∵﹣2<0<1,
    ∴c<a<b,
    故选:B.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    2、D
    【解析】
    只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.
    【详解】
    A、等式左边不是整式,故不是一元二次方程;
    B、中a=0时不是一元二次方程,故不符合题意;
    C、整理后的方程是2x+5=0,不符合定义故不是一元二次方程;
    D、整理后的方程是,符合定义是一元二次方程,
    故选:D.
    此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键.
    3、A
    【解析】
    本题主要考查分式有意义的条件:分母不能为0,分式有意义.
    【详解】
    分式有意义,则x+1≠0,即.
    故选:A
    考核知识点:分式有意义的条件.理解定义是关键.
    4、B
    【解析】
    根据利润=售价-进价,列出出不等式,求解即可.
    【详解】
    设成本为a元,由题意可得:

    去括号得:
    整理得:
    故.
    故选B.
    考查一元一次不等式的应用,熟练掌握利润=售价-进价是列不等式求解的关键.
    5、C
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于1,可得答案.
    【详解】
    要使有意义,得
    x-1≥1.
    解得x≥1,
    故选C.
    考点:二次根式有意义的条件.
    6、D
    【解析】
    由题得BD= =5,根据折叠的性质得出△ADG≌△A′DG,继而得A′G=AG,A′D=AD,A′B=BD-A′G,再Rt△A′BG根据勾股定理构建等式求解即可.
    【详解】
    解:由题得BD= =5,
    根据折叠的性质得出:△ADG≌△A′DG,
    ∴A′G=AG,A′D=AD=3,
    A′B=BD-A′G=5-3=2,BG=4-A′G
    在Rt△A′BG中,BG2=A′G2+A′B2可得:,
    解得A′G=,则AG=,
    故选:D.
    本题主要考查折叠的性质,由已知能够注意到△ADG≌△A′DG是解决的关键.
    7、B
    【解析】
    一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.
    【详解】
    解:∵直线y=ax+b过点B(−2,0),
    ∴方程ax+b=0的解是x=−2,
    故选:B.
    此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.
    8、B
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    解:,x2y,均为整式,是分式,
    故选:B
    本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8.
    【解析】
    已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
    【详解】
    ∵直线y=x+8与x轴、y轴分别交于A,B两点,
    ∴当x=0时,y=8;当y=0时,x=8,
    ∴点A、B的坐标分别为:(8 ,0)、(0,8),
    ∵C是OB的中点,
    ∴点C(0,4),
    ∴菱形的边长为4,则DE=4=DC,
    设点D(m,m+8),则点E(m,m+4),
    则CD2=m2+(m+8﹣4)2=16,
    解得:m=2,
    故点E(2,2),
    S△OAE= ×OA×yE=×8×2=8 ,
    故答案为8.
    本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
    10、有两个角相等的三角形是等腰三角形
    【解析】
    根据逆命题的条件和结论分别是原命题的结论和条件写出即可.
    【详解】
    ∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.
    故答案为:有两个角相等的三角形是等腰三角形.
    本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
    11、3或
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBD=∠CBD,
    ∴∠FBD=∠FDB,
    ∴FB=FD=11cm,
    ∵AF=5cm,
    ∴AD=16cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=8cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    分两种情况:①当点Q在EC上时,根据PF=EQ可得: 5-t=8-2t,
    解得:t=3;
    ②当Q在BE上时,根据PF=QE可得:5-t=2t-8,
    解得:t=.
    所以,t的值为:t=3或t=.
    故答案为:3或.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    12、
    【解析】
    先将y=(k-2)x+3k化为:y=(x+3)k-2x,可得当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,即可得到直线y=(k-2)x+3k一定经过的定点为(-3,6).
    【详解】
    根据题意,y=(k-2)x+3k可化为:y=(x+3)k-2x,
    ∴当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,
    ∴直线y=(k-2)x+3k一定经过的定点为(-3,6),
    故答案为:(-3,6).
    本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
    13、20cm或22cm.
    【解析】
    根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
    【详解】
    如图:
    ∵ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE为角平分线,
    ∴∠DAE=∠BAE,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴①当BE=3cm,CE=4cm,AB=3cm,
    则周长为20cm;
    ②当BE=4cm时,CE=3cm,AB=4cm,
    则周长为22cm.
    本题考查平行四边形的性质,分类讨论是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析.
    【解析】
    (1)画出底为3,高为2的平行四边形ABCD即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)如图,平行四边形ABCD即为所求.
    (2)如图,平行四边形EFGH即为所求.
    图① 图②
    本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.
    15、(1)证明见解析;(2)1+
    【解析】
    试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.
    试题解析:
    (1)证明:∵EF是DC的垂直平分线,
    ∴DE=EC,DF=CF,∠EGC=∠FGC=90°,
    ∵CD平分∠ACB,
    ∴∠ECG=∠FCG,
    ∵CG=CG,
    ∴△CGE≌△FCG(ASA),
    ∴GE=GF,
    ∴DE=EC=DF=CF,
    ∴四边形DFCE是菱形;
    (2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,
    ∵∠ABC=60°,
    ∴∠BDH=30°,
    ∴BH=BD=1,
    在Rt△DHB中,DH==,
    ∵四边形DFCE是菱形,
    ∴DF∥AC,
    ∴∠DFB=∠ACB=45°,
    ∴△DHF是等腰直角三角形,
    ∴DH=FH=,
    ∴BF=BH+FH=1+.
    16、 (1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).
    【解析】
    (1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;
    (2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;
    (3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;
    (1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.
    【详解】
    解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),
    ∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,
    ∴S△ABC=AC•BC=×2×1=1.
    故答案为1;
    (2)设直线AB的表达式为y=kx+b.
    ∵A点坐标是(1,3),B点坐标是(5,1),
    ∴,解得,
    ∴直线AB的表达式为y=﹣x+;
    (3)当k>2时,y=kx+2过A(1,3)时,
    3=k+2,解得k=1,
    ∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;
    当k<2时,y=kx+2过B(5,1),
    1=5k+2,解得k=﹣,
    ∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.
    综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;
    (1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.
    设直线CP的解析式为y=﹣x+n,
    ∵C点坐标是(1,1),
    ∴1=﹣+n,解得n=,
    ∴直线CP的解析式为y=﹣x+,
    ∴P(2,).
    设直线AB:y=﹣x+交y轴于点D,则D(2,).
    将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).
    综上所述,所求P点坐标是(2,)或(2,).
    故答案为(2,)或(2,).
    本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.
    17、(1);(2);(3)点的坐标为或.
    【解析】
    (1)待定系数法求一次函数解析式和反比例函数解析式,将已知点坐标代入并解方程(组)即可;
    (2)先求出直线l1与坐标轴的交点坐标,可得:△COE是等腰直角三角形,再由翻折可得:OCHE是正方形.即可求出H的坐标;
    (3)①先待定系数法求直线AO解析式为y=3x,再由△AEG的面积与△OFG的面积相等可得:EF∥AO,即可求直线l2的解析式;
    ②存在,由S△PBC=S△OBC可知:点P在经过点O或H平行于直线l1:y=-x+4的直线上,易求得点P的坐标为P(-1,1)或P(1,7).
    【详解】
    解:(1)将、点代入得,解得:
    直线的解析式为:;
    将代入中,得,
    双曲线的解析式为:.
    (2)如图1中,
    在中,令,得:
    是等腰直角三角形,
    由翻折得:

    是正方形.

    (3)如图2,连接,
    ①、.设直线解析式为,,
    直线解析式为,
    直线的解析式为:;
    ②存在,点坐标为:或.
    解方程组得:,;


    点在经过点或平行于直线的直线上,
    易得:或
    分别解方程组或得:或
    点的坐标为或.
    本题是反比例函数综合题,主要考查了待定系数法求一次函数和反比例函数解析式、翻折的性质、正方形的性质、三角形面积等;解题时要能够将这些知识点联系起来,灵活运用.
    18、(1) DF的长为3.4cm;(2)△DEF的面积为:S=5.1.
    【解析】
    (1)设DF=xcm,由折叠可知FB=DF=x,所以,CF=5-x,CD=AB=3,在Rt△DCF中根据勾股定理列式求解即可;
    (2)根据折叠的性质得到∠EFB=∠EFD,根据平行线的性质得到DEF=∠EFB,等量代换得到∠DEF=∠DFE,于是DE=DF=3.4,然后根据三角形的面积公式计算即可;
    【详解】
    解:(1)设DF=xcm,
    由折叠可知,FB=DF=x,所以,CF=5-x,CD=AB=3,
    在Rt△DCF中,32+(5-x)2=x2,
    解得:x=3.4cm
    所以,DF的长为3.4cm
    (2)由折叠可知∠EFB=∠EFD,
    又AD∥BC,
    所以,∠DEF=∠EFB,
    所以,∠DEF=∠DFE,
    所以,DE=DF=3.4,
    △DEF的面积为:S==5.1
    此题主要考查了折叠问题,矩形的性质,勾股定理,得出AE=A′E,根据勾股定理列出关于x的方程是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.
    【详解】
    是角平分线上的一点,,

    ,M是OP的中点,,


    点C是OB上一个动点,
    的最小值为P到OB距离,
    的最小值,
    故答案为1.
    本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.
    20、
    【解析】
    根据最简公分母的确定方法取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母进行解答.
    【详解】
    解:分式和的最简公分母是
    故答案为:.
    本题考查的是最简公分母的概念,取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
    21、2
    【解析】
    ∵x=2时,符合x>1的条件,
    ∴将x=2代入函数y=−x+4得:y=2.
    故答案为2.
    22、20
    【解析】
    根据频率的计算公式即可得到答案.
    【详解】
    解:
    所以可得参加比赛的人数为20人.
    故答案为20.
    本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.
    23、= <
    【解析】
    根据八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,方差为1 ,利用平均数和方差的计算方法,可求出, , 再分别求出9个数的平均数和方差,然后比较大小就可得出结果
    【详解】
    解:∵ 八个数据x1 , x2 , x3 , ……x8 , 的平均数为8,

    ∴,
    ∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的平均数为:

    ∵ 八个数据x1 , x2 , x3 , ……x8 , 的方差为1,


    ∵增加一个数8后,九个数据x1 , x2 , x3 , 8…x8的方差为:

    故答案为:=,<
    本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)补图见解析,;(2) ;(3) .
    【解析】
    (1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
    (2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
    (3)求出∠DAE度数,根据平行线的性质求出即可.
    【详解】
    解:如图1,
    ,,

    是的平分线,








    如图2,
    中,,


    是的平分线,








    如图3,
    中,,


    是的平分线,






    本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
    25、 (1) A,B两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.
    【解析】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.
    【详解】
    (1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得

    解得:.
    答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;
    (2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得
    1.5(20-a)+1.2(30+1.5a)≤69,
    解得:a≤1.
    答:A种设备购进数量至多减少1套.
    26、(1)60,108°;(2)见解析;(3)该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
    【解析】
    (1)由很了解的有18人,占30%,可求得接受问卷调查的学生数,继而求得扇形统计图中“很了解”部分所对应扇形的圆心角;(2)由(1)可求得基本了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.
    【详解】
    (1)接受问卷调查的学生共有:18÷30%=60(人);
    ∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;
    故答案为:60,108°;
    (2)60﹣3﹣9﹣18=30;
    补全条形统计图得:
    (3)根据题意得:900×=720(人),
    则估计该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    题号





    总分
    得分
    A
    B
    进价(万元/套)
    1.5
    1.2
    售价(万元/套)
    1.65
    1.4
    相关试卷

    黑龙江省哈尔滨市依兰县2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份黑龙江省哈尔滨市依兰县2024-2025学年数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省哈尔滨市呼兰区2024-2025学年九上数学开学统考试题【含答案】: 这是一份黑龙江省哈尔滨市呼兰区2024-2025学年九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省尚志市九上数学开学联考模拟试题【含答案】: 这是一份2024年黑龙江省尚志市九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map