黑龙江省龙东地区2025届数学九年级第一学期开学达标测试试题【含答案】
展开
这是一份黑龙江省龙东地区2025届数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出( )纸片ABEF.
A.平行四边形B.菱形C.矩形D.正方形
2、(4分)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ).
A.8%B.9%C.10%D.11%
3、(4分)如图所示,函数与在同一坐标系中,图象只能是下图中的( )
A.B.C.D.
4、(4分)将直线向右平移2个单位长度,可得直线的解析式为( )
A.B.C.D.
5、(4分)如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为( )
A.B.C.D.3
6、(4分)如图,函数()和()的图象相交于点A,则不等式>的解集为( )
A.>B.<C.>D.<
7、(4分)一次函数的图象大致是( )
A.B.C.D.
8、(4分)如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是( )
A.x>3B.x<3C.x>5D.x<5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
10、(4分)化简:(+2)(﹣2)=________.
11、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.
12、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
13、(4分)先化简:,再对a选一个你喜欢的值代入,求代数式的值.
三、解答题(本大题共5个小题,共48分)
14、(12分) “十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2∶3∶5的比例纳入总分.最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:
(1)写出说课成绩的中位数、众数;
(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这6名选手中序号是多少的选手将被录用?为什么?
15、(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.
(1)求证:四边形DEAP是菱形;
(2)若AE=CD,求∠DPC的度数.
16、(8分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
17、(10分)已知关于x的一元二次方程mx2-2x+1=0.
(1)若方程有两个实数根,求m的取值范围;
(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=,求m的值.
18、(10分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
(1)求直线y=kx+b的表达式;
(2)当x取何值时,y>1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
20、(4分)如图,△ABC 中,∠C=90°,AC=BC, AD 平分∠BAC 交 BC 于点 D,DE⊥AB,垂足为 E,且 AB=10cm,则△DEB 的周长是_____cm.
21、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
22、(4分)如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.
23、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.
求证:∠A=∠E.
25、(10分)如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,
(1)填空:BD=______;
(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);
(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
26、(12分)计算:
(1)
(2)
(3)(3+)(3﹣)
(4)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)0
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.
【详解】
解:由已知,根据折叠原理,对折后可得:,,
四边形是正方形,
故选:D.
此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.
2、C
【解析】
分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.
详解:设平均每次下调的百分率为x,由题意,得
6000(1-x)2=4860,
解得:x1=0.1,x2=1.9(舍去).
答:平均每次下调的百分率为10%.
故选C.
点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.
3、B
【解析】
根据反比例函数和一次函数的图像特点解答即可.
【详解】
∵k0时,函数图像过一、二、三象限,当k>0,b0,b=1>0,
∴函数图象必过一、二、三象限,
故选A.
本题考查了一次函数的图象和性质,属于简单题,熟悉系数与函数图象的位置关系是解题关键.
8、D
【解析】
由图象可知:A(1,0),且当x0,即可得到不等式kx+b>0的解集是x−3时,2x+6>0;
解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
故答案为x>−3;x⩽﹣.
22、(1,2)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.
【详解】
解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),
∴线段AB向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=1+1=2,
点B1的坐标为(1,2),
故答案为(1,2),
本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.
23、20cm或22cm.
【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
【详解】
如图:
∵ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当BE=3cm,CE=4cm,AB=3cm,
则周长为20cm;
②当BE=4cm时,CE=3cm,AB=4cm,
则周长为22cm.
本题考查平行四边形的性质,分类讨论是关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.
【详解】
证明:∵AB∥DC,
∴∠B=∠ECD,
在△ABC和△ECD中,
,
∴△ABC≌△ECD(SAS),
∴∠A=∠E(全等三角形的对应角相等).
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
25、(1)BD=2 (2) (3)120° 30°
【解析】
.
分析:(1)根据勾股定理计算即可;
(2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;
(3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.
详解:(1)BD==2 ;
(2)如图1所示:当AP与PE在一条线上时,PE+PC最小,
∵AB=,BE=t,
∴PE+PC的最小值为,
(3)分两种情况考虑:
①当点E在BC的延长线上时,
如图2所示,△PCE是等腰三角形,则CP=CE,
∴∠CPE=∠CEP,
∴∠BCP=∠CPE+∠CEP=2∠CEP,
∵在正方形ABCD中,∠ABC=90°,
∴∠PBA=∠PBC=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP=2∠CEP,
∵∠BAP+∠PEC=90°,
∴2∠PEC+∠PEC=90°,
∴∠PEC=30°;
②当点E在BC上时,
如图3所示,△PCE是等腰三角形,则PE=CE,
∴∠CPE=∠PCE,
∴∠BEP=∠CPE+∠PCE=2∠ECP,
∵四边形ABCD是正方形,
∴∠PBA=∠PBC=45°,
又AB=BC,BP=BP,
∴△ABP≌△CBP,
∴∠BAP=∠BCP,
∵∠BAP+∠AEB=90°,
∴2∠BCP+∠BCP=90°,
∴∠BCP=30°,
∴∠AEB=60°,
∴∠PEC=180°-∠AEB=120° .
点睛:本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,两点之间线段最短及分类讨论的数学思想,运用勾股定理是解(1)的关键,确定点P的位置是解(2)的关键,分两种情况讨论是解(3)的关键.
26、(1)-;(2)5;(3)4;(5).
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和二次根式的乘法法则运算;
(3)利用平方差公式计算;
(4)根据负整数指数幂的意义、零指数幂的意义和绝对值的意义计算.
【详解】
解:(1)原式=2﹣2+﹣3
=;
(2)原式=2﹣2+3+6
=5﹣2+2
=5;
(3)原式=9﹣5
=4;
(4)原式=+2+1﹣2﹣1
=.
本题考查了二次根式的四则混合运算,掌握运算法则是解决本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
序号
1
2
3
4
5
6
笔试成绩/分
66
90
86
64
65
84
专业技能测试成绩/分
95
92
93
80
88
92
说课成绩/分
85
78
86
88
94
85
相关试卷
这是一份2024年黑龙江省龙东地区中考数学试题,文件包含2024年黑龙江省龙东地区中考数学试题原卷版docx、2024年黑龙江省龙东地区中考数学试题解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份2024年黑龙江省龙东地区中考数学试题,共4页。
这是一份2024年黑龙江省龙东地区中考数学试题,共7页。试卷主要包含了考试时间120分钟,全卷共三道大题,总分120分等内容,欢迎下载使用。