湖北省鄂州市名校2024年九上数学开学达标检测试题【含答案】
展开这是一份湖北省鄂州市名校2024年九上数学开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为( )
A.10%B.15%C.20%D.25%
2、(4分)P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是
A.y1>y2B.y1<y2
C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2
3、(4分)下面四个二次根式中,最简二次根式是( )
A.B.C.D.
4、(4分)只用下列图形不.能.进行平面镶嵌的是( )
A.全等的三角形B.全等的四边形
C.全等的正五边形D.全等的正六边形
5、(4分)如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是( )
A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
C.a:b:c=::D.a=6,b=10,c=12
6、(4分)已知是二元一次方程组的解,则的平方根为( )
A.2B.4C.D.
7、(4分)已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是( )
A.1.5B.2C.2.5D.-6
8、(4分)如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为( )
A..(1,4)B..(1,3)C..(2,4)D..(2,3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若正比例函数y=kx的图象经过点(2,4),则k=_____.
10、(4分)如图,在矩形中,于点,对角线、相交于点,且,,则__________.
11、(4分)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.
12、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
13、(4分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
(1)请你根据上述统计数据,把下面的图和表补充完整;
一分钟投篮成绩统计分析表:
(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
15、(8分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
16、(8分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:
(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;
(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;
(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
17、(10分)如图,▱ABCD中,AB=2cm,AC=5cm,S▱ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.
(1)在运动过程中,四边形AECF的形状是____;
(2)t=____时,四边形AECF是矩形;
(3)求当t等于多少时,四边形AECF是菱形.
18、(10分)请用合适的方法解下列一元二次方程:
(1);
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正方体表面爬行的最短路程是______cm.
20、(4分)如图,在中,,底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,若双曲线经过点,则的面积为________.
21、(4分)抛物线有最_______点.
22、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
23、(4分)已知:如图,、分别是的中线和角平分线,,,则的长等于__.
二、解答题(本大题共3个小题,共30分)
24、(8分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.
(1)当k=1时,求点P的坐标;
(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;
(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.
25、(10分)如图,在正方形中,已知于.
(1)求证:;
(2)若,求的长.
26、(12分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.
【详解】
解:设这种商品平均每次降价的百分率为x
根据题意列方程得:
解得(舍)
故选C.
本题主要考查一元二次方程的应用,关键在于根据题意列方程.
2、D
【解析】
试题分析:∵,k=<0,∴y随x的增大而减小.
∴当x1<x1时,y1>y1.故选D.
3、A
【解析】
分析:根据最简二次根式的概念进行判断即可.
详解:A.是最简二次根式;
B.被开方数含分母,故B不是最简二次根式;
C.被开方数含能开得尽方的因数,故C不是最简二次根式;
D.被开方数含有小数,故D不是最简二次根式.
故选A.
点睛:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
4、C
【解析】
判断一种图形是否能够镶嵌,只要看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.根据以上结论逐一判断即可.
【详解】
解:A项,三角形的内角和是180°,是360°的约数,能镶嵌平面,不符合题意;
B项,四边形的内角和是360°,是360°的约数,能镶嵌平面,不符合题意;
C项,正五边形的一个内角的度数为180-360÷5=108,不是360的约数,不能镶嵌平面,符合题意;
D项,正六边形的一个内角的度数是180-360÷6=120,是360的约数,能镶嵌平面,不符合题意;故选C.
本题考查了平面镶嵌的知识,几何图形能镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.用一种正多边形单独镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
5、D
【解析】
根据勾股定理的逆定理和三角形的内角和定理进行判定即可.
【详解】
解:A、∵∠A=25°,∠B=65°,
∴∠C=180°﹣∠A﹣∠B=90°,
∴△ABC是直角三角形,故A选项正确;
B、∵∠A:∠B:∠C=2:3:5,
∴,
∴△ABC是直角三角形;故B选项正确;
C、∵a:b:c=::,
∴设a=k,b=k,c=k,
∴a2+b2=5k2=c2,
∴△ABC是直角三角形;故C选项正确;
D、∵62+102≠122,
∴△ABC不是直角三角形,故D选项错误.
故选:D.
本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.
6、D
【解析】
由,是二元一次方程组的解,将,代入方程组求出与的值,进而求出的值,利用平方根的定义即可求出的平方根.
【详解】
将代入方程组中,得:,
解得:,
,
则的平方根为.
故选:.
此题考查了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法,代入消元法.
7、A
【解析】
根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.
【详解】
在一次函数y=-0.5x+2中k=-0.5<0,
∴y随x值的增大而减小,
∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,
故选A.
本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.
8、A
【解析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.
【详解】
∵A(﹣1,0)的对应点C的坐标为(2,1),
∴平移规律为横坐标加3,纵坐标加1,
∵点B(﹣2,3)的对应点为D,
∴D的坐标为(1,4).
故选A.
本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
10、
【解析】
由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AE的长.
【详解】
在矩形中, AO=CO=BO=DO
∵,,
∴BE=EO
∵AE⊥BD
∴垂直平分.
∴AB=AO
∴AB=AO=BO
∴为等边三角形.
∴∠BAO=60°
∵AE⊥BD
∴∠BAE=30°
∴,
∴.
故答案为:
本题考查了矩形的性质,等边三角形的判定和性质,熟练运用矩形的性质是本题的关键.
11、(-8,4)或(8,-4)
【解析】
由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.
【详解】
∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,
∴点E的对应点E′的坐标是:(-8,4)或(8,-4).
故答案为:(-8,4)或(8,-4).
此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.
12、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
13、1.
【解析】
将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.
【详解】
∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.
本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)乙组成绩好于甲组,理由见解析
【解析】
(1)根据测试成绩表求出乙组成绩为1分和9分的人数,补全统计图,再根据平均数的计算方法和中位数的定义求出平均数和中位数,即可补全分析表;
(2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.
【详解】
(1)根据测试成绩表即可补全统计图(如图):
补全分析表:甲组平均分(4×1+5×2+6×5+1×2+8×1+9×4)÷15=6.8,
乙组中位数是第8个数,是1.
(2)甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,又乙组合格率比甲组高,所以乙组成绩好于甲组.
此题考查频数(率)分布直方图,方差,中位数,加权平均数,解题关键在于掌握中位数和方差的运算公式.
15、 (1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.
【解析】
(1)用SAS证△ABE≌△DAF即可;
(2)DG=DP,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,先用SAS证△PMG≌△PCQ,得CQ=MG=AG,进一步证明∠DAG=∠DCQ,再用SAS证明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ=90°,进而可得△DPG为等腰直角三角形,由此即得结论;
(3)延长AE、DC交于点H,由条件CG=BC可证CD=CG=CH,进一步用SAS证△ABE≌△HCE,得BE=CE,因为AF=BE,所以AF:BF=BE:CE=1:1.
【详解】
解:(1)证明:正方形ABCD中,
AB=AD,∠ABE=∠DAF=90°,BE=AF,
∴△ABE≌△DAF(SAS)
∴AE=DF;
(2)DG=DP,理由如下:
如图,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,
∵PM=PC,∠MPG=∠CPQ,
∴△PMG≌△PCQ(SAS),
∴CQ=MG=AG,∠PGM=∠PQC,
∴CQ∥DF,
∴∠DCQ=∠FDC=∠AFG,
∵∠AFG+∠BAE=90°,∠DAG+∠BAE=90°,
∴∠AFG=∠DAG.
∴∠DAG=∠DCQ.
又∵DA=DC,
∴△DAG≌△DCQ(SAS).
∴∠ADF=∠CDQ.
∵∠ADC=90°,
∴∠FDQ=90°.
∴△GDQ为等腰直角三角形
∵P为GQ的中点
∴△DPG为等腰直角三角形.
∴DG=DP.
(3)1∶1.
证明:延长AE、DC交于点H,
∵CG=BC,BC=CD,
∴CG=CD,∴∠1=∠2.
∵∠1+∠H=90°,∠2+∠3=90°,
∴∠3=∠H.
∴CG=CH.
∴CD=CG=CH.
∵AB=CD,∴AB=CH.
∵∠BAE=∠H,∠AEB=∠HEC,
∴△ABE≌△HCE(SAS).
∴BE=CE.
∵AF=BE,
∴AF:BF=BE:CE=1:1.
本题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质,其中第(1)小题是基础,第(2)(3)两小题探求结论的关键是添辅助线构造全等三角形,从解题过程看,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.
16、(1)见解析;(2),见解析;(3),,(元).
【解析】
(1)根据已知各点坐标进而在坐标系中描出即可;
(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;
(3)利用利润=销量×(每件利润),进而得出答案.
【详解】
解:(1)如图:
(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,
由题提供数据可知固定k值为24,
所以函数表达式为:,
连线如图:
(3)利润 = 销量 ×(每件利润),
利润为T,销量为y,由(2)知,
每件售价为1,则每件利润为x-1,
所以,
当最大时,最小,而此时最大,
根据题意,钥匙扣售价不超过8元,
所以时,(元).
此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.
17、(1)四边形AECF是平行四边形;理由见解析;(2)t=1;(3)t=
【解析】
(1)由平行四边形的性质得出AB=CD=2cm,AB∥CD,由已知条件得出CF=AE,即可得出四边形AECF是平行四边形;
(2)若四边形AECF是矩形,则∠AFC=90°,得出AF⊥CD,由平行四边形的面积得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;
(3)当AE=CE时,四边形AECF是菱形.过C作CG⊥BE于G,则CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.
【详解】
解:(1)四边形AECF是平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB=CD=2cm,AB∥CD,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四边形AECF是平行四边形;
故答案为:平行四边形;
(2)t=1时,四边形AECF是矩形;理由如下:
若四边形AECF是矩形,
∴∠AFC=90°,
∴AF⊥CD,
∵S▱ABCD=CD•AF=8cm2,
∴AF=4cm,
在Rt△ACF中,AF2+CF2=AC2,
即42+(t+2)2=52,
解得:t=1,或t=-5(舍去),
∴t=1;故答案为:1;
(3)依题意得:AE平行且等于CF,
∴四边形AECF是平行四边形,
故AE=CE时,四边形AECF是菱形.
又∵BE=tcm,
∴AE=CE=t+2(cm),
过C作CG⊥BE于G,如图所示:
则CG=4cm
AG==3(cm),
∴GE=t+2-3=t-1(cm),
在△CGE中,由勾股定理得:CG2+GE2=CE2=AE2,
即42+(t-1)2=(t+2)2,
解得:t=,
即t=s时,四边形AECF是菱形.
本题考查了平行四边形的性质与判定、菱形的判定、矩形的判定、勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理得出方程是解决问题的关键.
18、(1),;(2),.
【解析】
(1)根据直接开平方法即可求解;
(2)根据因式分解法即可求解.
【详解】
解:(1)
,
x=±2
∴,.
(2)
,
∴x+3=0或x-1=0
∴,.
此题主要考查解一元二次方程,解题的关键是熟知因式分解法的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据“两点之间线段最短”,将点A和点B所在的各面展开,展开为矩形,AB为矩形的对角线的长即为蚂蚁沿正方体表面爬行的最短距离,再由勾股定理求解即可.
【详解】
将点A和点B所在的面展开为矩形,AB为矩形对角线的长,
∵矩形的长和宽分别为8cm和4cm,
∴AB==cm.
故蚂蚁沿正方体的最短路程是cm.
故答案为:.
本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
20、
【解析】
连接BE,先根据题意证明BE⊥BC,进而判定△CBE∽△BOD,根据相似比得出BC×OD=OB×BE的值即为|k|的值,再由三角形面积公式即可求解.
【详解】
解:如图,连接,
∵等腰三角形中,,
∴,
∵,
∴,
∴,
又∵,
∴,即,
∴,
又∵,
∴,
∴,即,
又∵双曲线的图象过点,
∴,
∴的面积为.
故答案为:.
此题主要考查了反比例函数比例系数k的几何意义,解题时注意:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,体现了数形结合的思想.
21、低
【解析】
因为:,根据抛物线的开口向上可得答案.
【详解】
解:因为:,所以根据抛物线的开口向上,抛物线图像有最低点.
故答案:低.
本题考查的符号决定抛物线的图像的开口方向,掌握抛物线的图像特点是解题关键.
22、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
23、
【解析】
过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC=AF.
【详解】
过点作,
是的中线,,
为中点,,
,则,,
是的角平分线,,
,
为中点,
为中点,
,
.
故答案为:.
本题考查了三角形中线、三角形中位线定理和角平分线的性质以及勾股定理的应用,作出辅助线构建直角三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(2)P(,);(2);(3)(,)
【解析】
(2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组
, 解这个方程组得:,
∴P(,);
(2)当y=0时,kx+2k=0 ,∵k≠0,∴x=-2,
∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,
∴A(6,0),OA=6 ,
过点P作PG⊥DF于点G,
在△PDG和△ADE中,
∴△PDG≌△ADE,
得DE=DG=DF,
∴PD=PF,
∴∠PFD=∠PDF
∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
∴∠PCA=∠PAC,
∴PC=PA
过点P作PH⊥CA于点H,
∴CH=CA=4,
∴OH=2,
当x=2时,y=−×2+3=2代入y=kx+2k,得k=;
(3)在Rt△PMC和Rt△PQR中,
∴Rt△PMC≌Rt△PQR,
∴CM=RQ,
∴NR=NC,
设NR=NC=a,则R(−a−2,a),
代入y=−x+3,
得− (−a−2)+3=a,解得a=8,
设P(m,n),则
解得
∴P(,)
考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.
25、(1)见解析;(2)
【解析】
(1)由正方形的性质可得BC=CD,∠B=∠BCD=90°,利用直角三角形中两个锐角互余以及垂直的定义证明∠BEC=∠CFD即可证明:△BCE≌△CDF;
(2)由(1)可知:△BCE≌△CDF,所以CF=BE=2,由相似三角形的判定方法可知:△BCE∽HCF,利用相似三角形的性质:对应边的比值相等即可求出HF的长.
【详解】
(1)证明:在正方形中,
∴,
∵,
∴,
又∵,
∴,
∴;
(2)解:∵
∴,
∵,
∴,
∴,
在Rt△BCE中,BC=AB=6,BE=2,
∴,
∴;
本题考查了正方形的性质、相似三角形的判定和性质以及全等三角形的判定和性质,题目的综合性很强,但难度不大.
26、这个多边形的边数是1.
【解析】
试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.
试题解析:设这个多边形的边数为n,
根据题意,得(n﹣2)×180°=2×360°+180°,
解得n=1.
故这个多边形的边数是1.
题号
一
二
三
四
五
总分
得分
成绩(分)
4
5
6
7
8
9
甲组(人)
1
2
5
2
1
4
乙组(人)
1
1
4
5
2
2
统计量
平均分
方差
中位数
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
86.7%
13.3%
统计量
平均分
方差
中位数
合格率
优秀率
甲组
6.8
2.56
6
80.0%
26.1%
乙组
6.8
1.16
1
86.1%
13.3%
相关试卷
这是一份湖北省鄂州市区2024年九上数学开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省鄂州市2024年数学九上开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省济宁市名校九上数学开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。