湖北省荆州市监利县2024-2025学年数学九上开学检测试题【含答案】
展开这是一份湖北省荆州市监利县2024-2025学年数学九上开学检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列方程中,是一元二次方程的是( )
A.B.C.D.
2、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )
A.8B.7C.4D.3
3、(4分)在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是( )
A.电动伸缩门 B.升降台
C.栅栏 D.窗户
4、(4分)一组数据:-1、2、3、1、0,则这组数据的平均数和方差分别是( )
A.1,1.8B.1.8,1C.2,1D.1,2
5、(4分)若一元二次方程有实数根,则实数的取值范围是( )
A.B.C.D.
6、(4分)下列关系式中:y=﹣3x+1、、y=x2+1、y=,y是x的一次函数的有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是( )
A.
B.
C.
D.
8、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
A.x2B.x2或1x0
C.1x0D.x2或x1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当a=______时,的值为零.
10、(4分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.
11、(4分)已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.
12、(4分)要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是_____.
13、(4分)直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形中,,,,为的中点,连接.
(1)求证:四边形是菱形;
(2)连接,若平分,,求的长.
15、(8分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.
(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.
(1)如图(1)当时,线段、所在直线夹角为______.
(2)如图(2)当时,线段、所在直线夹角为_____.
(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;
(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.
(运用拓广)运用所形成的结论求解下面的问题:
(4)如图(4),四边形中,,,,,,试求的长度.
16、(8分)计算化简
(1)
(2)
17、(10分)如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是 三角形,△PP′A是 三角形,∠BPC= °;
(2)利用△BPC可以求出△ABC的边长为 .
如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
18、(10分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:
请根据以上信息,解答以下问题:
(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;
(2)求出该班调查的家庭总户数是多少?
(3)求该小区用水量不超过15的家庭的频率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.
20、(4分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
21、(4分)如图,在矩形中,的平分线交于点, 于点,连接并延长交于点,连接交于点,下列结论:
①;②;③;④;⑤,
其中正确的有__________(只填序号).
22、(4分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.
23、(4分)直线y=2x﹣4与x轴的交点坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
25、(10分)某车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成任务.求改进操作方法后每天加工的零件个数.
26、(12分)已知一次函数的图象如图所示,
(1)求的值;
(2)在同一坐标系内画出函数的图象;
(3)利用(2)中你所面的图象,写出时,的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一元二次方程的定义即可求解.
【详解】
A. 是一元一次方程,故错误;
B. 含有两个未知数,故错误;
C. 为一元二次方程,正确;
D. 含有分式,故错误,
故选C.
此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.
2、A
【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.
【详解】
解:∵四边形ABCD是菱形,
∴OA=OC=3,OB=OD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OB===4,
∴BD=2OB=8,
故选A.
本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.
3、C
【解析】
根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.
【详解】
A. 由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;
B. 升降台也是运用了四边形易变形的特性;
C.栅栏是由一些三角形焊接而成的,它具有稳定性;
D.窗户是由四边形构成,它具有不稳定性.
故选C.
此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.
4、D
【解析】
先根据平均数计算公式列出算式进行计算,再根据平均数求出方差即可.
【详解】
一组数据:-1、2、3、1、0,则平均数=,
方差=,
故选D.
本题是对数据平均数和方差的考查,熟练掌握平均数和方差公式是解决本题的关键.
5、D
【解析】
由一元二次方程根的判别式△≥0,结合一元二次方程的定义,即可求出k的取值范围.
【详解】
解:由题意得:,
,,
∴解得:.
故选:D.
本题考查了一元二次方程根的判别式,以及一元二次方程的定义,解题的关键是熟练掌握根的判别式求参数的取值范围.
6、B
【解析】
形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
【详解】
解:函数y=﹣3x+1,,y=x2+1,y=中,y是x的一次函数的是:y=﹣3x+1、y=,共2个.
故选:B.
本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
7、D
【解析】
试题解析:动点P运动过程中:
①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;
②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;
③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;
④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;
⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.
结合函数图象,只有D选项符合要求.
故选D.
考点:动点问题的函数图象.
8、B
【解析】
根据交点坐标及图象的高低即可判断取值范围.
【详解】
要使,则一次函数的图象要高于反比例函数的图象,
∵两图象交于点A(2,1)、B(-1,-2),
∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
∴使的x的取值范围是:或.
故选:B.
本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1.
【解析】
根据分式的值为零的条件列式计算即可.
【详解】
由题意得:a2﹣1=2,a﹣1≠2,
解得:a=﹣1.
故答案为:﹣1.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.
10、
【解析】
设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.
【详解】
设A坐标为(x,y),
∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,
∴x+5=0+3,y+0=0-3,
解得:x=-2,y=-3,即A(-2,-3),
设过点A的反比例解析式为y=,
把A(-2,-3)代入得:k=6,
则过点A的反比例解析式为y=,
故答案为y=.
此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.
11、
【解析】
分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.
详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,
∵菱形的对角线互相垂直平分,
根据勾股定理可得菱形的边长=cm.
故答案为.
点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.
12、∠B=∠D=60°
【解析】
由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.
【详解】
解:添加条件∠B=∠D=60°,
∵∠A=∠C=120°,∠B=∠D=60°,
∴∠A+∠B=180°,∠C+∠D=180°
∴AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:∠B=∠D=60°.
考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.
13、6.5
【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
【详解】
解:如图,在△ABC中,∠C=90°,AC=11,BC=5,
根据勾股定理知,
∵CD为斜边AB上的中线,
故答案为:6.5
本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)
【解析】
(1)由,,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)可证AB=BC,由勾股定理可求出.
【详解】
(1)∵为中点,∴;
∵,∴;
∵,∴四边形是平行四边形.
∵,为的中点,∴.
∴平行四边形是菱形 .
(2)∵平分,∴;
∵,∴,
∴,∴;
在中,,,.
本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.
15、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).
【解析】
(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°
(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°
(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补, 延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;
形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.
【详解】
(1)解:(1)如图1,延长DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案为:90°
(2)如图2,延长DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案为:60°
(3)直线与直线所夹的锐角与旋转角互补,
延长,交于点
∵线段绕点顺时针旋转得线段,
∴,,
∴
∴
∴
∵
∴
∴
∴直线与直线所夹的锐角与旋转角互补;
形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,
∴旋转角为,
∴,,,
∴△BDF是等边三角形,
∵,,
∴,
∴.
本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.
16、(1)(2)
【解析】
(1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.
【详解】
解:(1)原式=1+3-(-2)=6-;
(2)原式==
本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
17、(1)等边 直角 150°;(2);(3)135°;(4) .
【解析】
(1)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,
(2)过点B作BM⊥AP′,交AP′的延长线于点M,进而求出等边△ABC的边长为 ,问题得到解决.
(3)求出,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°;
(4)过点B作BF⊥AE,交AE的延长线于点F,求出FE=BF=1,AF=2,关键勾股定理即可求出AB.
【详解】
解:(1)∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B顺时针旋转60°得出△ABP′,
∴
∵∠PBC+∠ABP=∠ABC=60°,
∴∠ABP′+∠ABP=∠ABC=60°,
∴△BPP′是等边三角形,
∴
∵AP′=1,AP=2,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,则△PP′A是 直角三角形;
∴∠BPC=∠AP′B=90°+60°=150°;
(2)过点B作BM⊥AP′,交AP′的延长线于点M,
∴
由勾股定理得:
∴
由勾股定理得:
故答案为(1)等边;直角;150;;
(3)将△BPC绕点B逆时针旋转90°得到△AEB,
与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,
∴∠EBP=∠EBA+∠ABP=∠ABC=90°,
∴,
由勾股定理得:EP=2,
∵
∴AE2+PE2=AP2,
∴∠AEP=90°,
∴∠BPC=∠AEB=90°+45°=135°;
(4)过点B作BF⊥AE,交AE的延长线于点F;
∴∠FEB=45°,
∴FE=BF=1,
∴AF=2;
∴在Rt△ABF中,由勾股定理,得AB=;
∴∠BPC=135°,正方形边长为.
答:(3)∠BPC的度数是135°;
(4)正方形ABCD的边长是.
本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.
18、(1)m=12,n=0.08;(2)50;(3)0.68.
【解析】
(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;
补充完整的频数直方图见详解;
(2)根据任意一组频数和频率即可得出总频数,即总频数为;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
【详解】
解:(1)∵频数为6,频率为0.12
∴总频数为
∴m=50-6-16-10-4-2=12
∴n=4÷50=0.08
数据求出后,即可将频数直方图补充完整,如下图所示:
(2)根据(1)中即可得知,总频数为
答:该班调查的家庭总户数是50户;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.
【详解】
解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.
本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.
20、
【解析】
从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,
其中只有①②、①③和③④可以判断四边形ABCD是平行四边形,所以能够得出这个四边形ABCD是平行四边形的概率是 .
点睛:本题用到的知识点:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
21、①②③④
【解析】
①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF =BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.
【详解】
∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
在△ABE和△AHD中,
∵∠BAE=∠DAE,
∠ABE=∠AHD=90°,
AE=AD,
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°-45°)=67.5°,
∴∠CED=180°-45°-67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵AB=AH,
∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=67.5°=∠AED,
∴OE=OH,
∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,
∴∠DHO=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°-67.5°=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
∵∠EBH=∠OHD=22.5°,
BE=DH,
∠AEB=∠HDF=45°,
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
∵HE=AE-AH=BC-CD,
∴BC-CF=BC-(CD-DF)=BC-(CD-HE)
=(BC-CD)+HE=HE+HE=2HE.故④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④.
故答案为:①②③④.
本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
22、1
【解析】
先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.
【详解】
根据平行四边形的性质得AD=BC=8
在Rt△ABC中,AB=10,AD=8,AC⊥BC
根据勾股定理得AC==6,
则S平行四边形ABCD=BC•AC=1,
故答案为:1.
本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.
23、(2,0)
【解析】
与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.
【详解】
解:令,则,
解得.
所以,直线与x轴的交点坐标是.
故填:.
本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.
二、解答题(本大题共3个小题,共30分)
24、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.
【解析】
(1)根据平均数、中位数、众数的概念分析计算即可;
(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;
(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.
【详解】
解:(1)七年级的平均分a=,众数b=85,
八年级选手的成绩是:70,75,80,100,100,故中位数c=80;
故答案为85,85,80;
(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,
故七年级决赛成绩较好;
(3)S2七年级=(分2),
S2七年级<S2八年级
∴七年级代表队选手成绩比较稳定.
本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.
25、改进操作方法后每天加工零件55个
【解析】
设改进技术后每天加工零件x个,则改进技术前每天加工(x﹣15)个,改进前制造80个需要的时间是天,改进技术后220个需要的时间是天,根据前后共用的时间是6天建立方程求出其解即可.
【详解】
解:设改进操作方法后每天加工零件的件数为x件,
则改进操作方法前每天加工零件(x-15)个,依题意得
+=6
去分母,整理,得:x2-65x+550=0
∴x1=10,x2=55
经检验,它们都是方程的根,
但x=10时,x-15=-5不合题意,所以只能取x=55
答:改进操作方法后每天加工零件55个
本题考查了列分式方程解决工程问题,化为一元二次方程的分式方程的解法的运用,解答时根据前后共用的时间是6天建立方程是关键.解答分式方程需要验根不得忘记.
26、(1);(2)详见解析;(3)
【解析】
(1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
【详解】
解:(1)由图像可知,,.
将,两点代入中,
得,解得.
(2)对于函数,
列表:
图象如图:
(3)由图象可得:当时,x的取值范围为:.
本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
月均用水量x(t)
频数(户)
频率
0<x≤5
6
0.12
5<x≤10
m
0.24
10<x≤15
16
0.32
15<x≤20
10
0.20
20<x≤25
4
n
25<x≤30
2
0.04
平均分(分)
中位数(分)
众数(分)
方差(分2)
七年级
a
85
b
S七年级2
八年级
85
c
100
160
x
0
1
y
﹣2
0
相关试卷
这是一份2024年湖北省荆州市洪湖市数学九上开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省监利县九年级数学第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省荆州市松滋市九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。