湖北省十堰市2025届数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )
A.B.C.D.
2、(4分)下列各式成立的是 ( )
A.=2B.=-5C.=xD.=±6
3、(4分)若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是( )
A.B.C.D.或
4、(4分)如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是( )
A.B.C.D.
5、(4分)如图,△ABC中,AC=BC,点P为AB上的动点(不与A,B重合)过P作PE⊥AC于E,PF⊥BC于F设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是( )
A.B.
C.D.
6、(4分)如图,四边形中,,,且,以,,为边向外作正方形,其面积分别为,,.若,,则的值为
A.8B.12C.24D.60
7、(4分)不等式组的整数解有三个,则a的取值范围是( )
A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0
8、(4分)若在反比例函数的图像上,则下列结论正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若a<0,则化简的结果为__________.
10、(4分)如图,在平面直角坐标系中,一次函数和函数的图象交于A、B两点.利用函数图象直接写出不等式的解集是____________.
11、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
12、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
13、(4分)若二次根式有意义,则x的取值范围是 ▲ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.
(1)求证:四边形ABCD为菱形;
(2)若BD=8,AC=6,求DE的长.
15、(8分)按要求作答
(1)解方程;(2)计算.
16、(8分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
(1)判断四边形的形状,并说明理由,
(2)若,求的长,
17、(10分)关于的方程,其中分别是的三边长.
(1)若方程有两个相等的实数根,试判断的形状,并说明理由;
(2)若为等边三角形,试求出这个方程的解.
18、(10分)(1)计算
(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
解方程
解:方程两边乘,得第一步
解得 第二步
检验:当时,.
所以,原分式方程的解是 第三步
小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)数据2,0,1,9,0,6,1,6的中位数是______.
20、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
21、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.
22、(4分)若,则_____.
23、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x的一元二次方程(m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根.
25、(10分) “2019宁波国际山地马拉松赛”于2019年3月31日在江北区举行,小林参加了环绕湖8km的迷你马拉松项目(如图1),上午8:00起跑,赛道上距离起点5km处会设置饮水补给站,在比赛中,小林匀速前行,他距离终点的路程s(km)与跑步的时间t(h)的函数图象的一部分如图2所示
(1)求小林从起点跑向饮水补给站的过程中与t的函数表达式
(2)求小林跑步的速度,以及图2中a的值
(3)当跑到饮水补给站时,小林觉得自己跑得太悠闲了,他想挑战自己在上午8:55之前跑到终点,那么接下来一段路程他的速度至少应为多少?
26、(12分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.
2、A
【解析】
分析:根据算术平方根的定义判断即可.
详解:A.,正确;
B.,错误;
C.,错误;
D.,错误.
故选A.
点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.
3、C
【解析】
先根据函数y随x的增大而增大可确定1−2k>1,再由函数的图象不经过第二象限可得图象与y轴的交点在y轴的负半轴上或原点,即−k≤1,进而可求出k的取值范围.
【详解】
解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,
∴1−2k>1,且−k≤1,
解得,
故选:C.
本题主要考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1;一次函数y=kx+b图象与y轴的负半轴相交⇔b<1;一次函数y=kx+b图象过原点⇔b=1.
4、C
【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵点E,F分别是边AD,AB的中点,
∴EF∥BD,
∴△AFH∽△ABO,
∴AH:AO=AF:AB,
故选:C
此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
5、D
【解析】
利用S△ABC=S△PCA+S△PCB=AC×PEPF×BC,即可求解.
【详解】
解:连接CP,设AC=BC=a(a为常数),
则S△ABC=S△PCA+S△PCB=AC×PEPF×BC=a(PE+PF)=ay,
∵△ABC的面积为常数,故y的值为常数,与x的值无关.
故选:D.
本题考查了动点问题的函数图象.解答该题的关键是将△ABC的面积分解为△PCA和△PCB的面积和.
6、B
【解析】
过作交于,则,依据四边形是平行四边形,即可得出,,再根据勾股定理,即可得到,进而得到的值.
【详解】
如图,过作交于,则,
,
四边形是平行四边形,
,,
,
,
,
,
,
,
,即,
,
故选.
本题考查了平行四边形的判定与性质,勾股定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
7、B
【解析】
根据不等式组的整数解有三个,确定出a的范围即可.
【详解】
∵不等式组的整数解有三个,
∴这三个整数解为2、1、0,
则﹣1<a≤0,
故选:B.
此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.
8、D
【解析】
将点A(a,b)代入反比例函数的解析式,即可求解.
【详解】
解:∵A(a,b)在反比例函数的图象上,
∴,即ab=-2<1,
∴a与b异号,
∴<1.
故选D.
本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-a
【解析】
直接利用二次根式的化简的知识求解即可求得答案.
【详解】
∵a<0,∴=|a|=﹣a.
故答案为﹣a.
本题考查了二次根式的化简.注意=|a|.
10、
【解析】
不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象可以直接得出答案.
【详解】
解:不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
故答案为:1<x<1.
本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.
11、35.
【解析】
利用四边形内角和得到∠BAD’,从而得到∠α
【详解】
如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
12、 (−1,0).
【解析】
先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
【详解】
∵直线y=kx+b和直线y=−3x平行,
∴k=−3,
把(0,−3)代入y=−3x+b得b=−3,
∴直线解析式为y=−3x−3,
当y=0时,−3x−3=0,解得x=−1,
∴直线y=−3x−3与x轴的交点坐标为(−1,0).
故答案为(−1,0).
此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
13、.
【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
【详解】
根据二次根式被开方数必须是非负数的条件,得.
本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)
【解析】
(1)由ASA证明△OAD≌△OCB得出OD=OB,得出四边形ABCD是平行四边形,再证出∠CBD=∠CDB,得出BC=DC,即可得出四边形ABCD是菱形;
(2)由菱形的性质得出OB=BD=4,OC=AC=3,AC⊥BD,由勾股定理得出BC==5,证出△BOC∽△BED,得出,即可得出结果.
【详解】
(1)证明:∵O为△ABC边AC的中点,AD∥BC,
∴OA=OC,∠OAD=∠OCB,∠AOD=∠COB,
在△OAD和△OCB中,
,
∴△OAD≌△OCB(ASA),
∴OD=OB,
∴四边形ABCD是平行四边形,
∵DB平分∠ADC,
∴∠ADB=∠CDB,
∴∠CBD=∠CDB,
∴BC=DC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴OB=BD=4,OC=AC=3,AC⊥BD,
∴∠BOC=90°,
∴BC==5,
∵DE⊥BC,
∴∠E=90°=∠BOC,
∵∠OBC=∠EBD,
∴△BOC∽△BED,
∴,即,
∴DE=.
本题考查了菱形的判定与性质、平行四边形的判定、全等三角形的判定与性质、勾股定理、相似三角形的判定和性质;熟练掌握菱形的判定与性质是解题的关键.
15、 (1) (2) 3
【解析】
(1)本题是一元二次方程,解答该方程可选择直接用公式法解答.
(2)本题为实数的运算,首先把两个乘法先运算出来,第一个乘法式可以由平方差公式计算,第二个乘法可先把根式化为最简根式再进行约分,最后加减时,注意合并同类根式.
【详解】
(1)解:原方程中a=-1,b=-3,c=2
首先用根的判别式判断该二元一次方程是否有解
得:,所以该方程有解
由公式可得:
即解得
(2)原式=
故答案为(1) (2) 3
本题考察了一元二次方程的解法和实数的混合运算,需要注意的是一元二次方程解答直接首先用根的判别式判断是否有解,在实数运算过程中,先算乘除与乘方后算加减,有括号的先算括号里面的.涉及到根式运算时,务必要化简根式与合并同类根式
16、(1)四边形为菱形,见解析;(2)
【解析】
(1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
(2)根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
解: 四边形为菱形;
理由如下:
四边形为矩形,
四边形为平行四边形
由折叠的性质,则
四边形为菱形,
,
.
由得
设.
在,
解得:,
,
.
此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
17、(1)是直角三角形;理由见解析;(2),.
【解析】
(1)根据根的判别式为0,计算出的关系,即可判定;
(2)根据题意,将方程进行转化形式,即可得解.
【详解】
(1)直角三角形
根据题意,得
即
所以是直角三角形
(2)根据题意,可得
解出
此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.
18、(1);(2)一 ,
【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
【详解】
解:(1)
=
=
=
=
(2)小刚的解法从第一步开始出现错误
解方程
解:方程两边乘,得
解得
检验:当时,.
所以,原分式方程的解是
故答案为:一 ,
本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.2
【解析】
根据中位数的意义,将这组数据从小到大排序后,处在第4、2位置的两个数的平均数是中位数,即可解答.
【详解】
解:将这组数据从小到大排序后,处在第4、2位的两个数的平均数为(1+2)÷2=1.2,
因此中位数是1.2.
故答案为:1.2.
此题考查中位数的意义,把一组数据从小到大排列后找出处在中间位置的一个数或两个数的平均数是解题关键.
20、1
【解析】
通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
【详解】
解:由题意知道:题目中的数据可以整理为:,,…,
∴第13个答案为:.
故答案为:1.
此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
21、b>1.
【解析】
先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.
【详解】
根据题意得b≠1,
x2=,
当>1时,方程有实数解,
所以b>1.
故答案为:b>1.
本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.
22、
【解析】
分析:由题干可得b=,然后将其代入所求的分式解答即可.
详解:∵的两内项是b、1,两外项是a、2,
∴b=,
∴=.
故本题的答案:.
点睛:比例的性质.
23、①③
【解析】
由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故③正确.
【详解】
解:∵BF⊥AD,
∴∠AFB=90°,
∵在平行四边形ABCD中,AD∥BC,
∴∠AFB=∠CBF=90°,故①正确;
延长FE交BC的延长线与M,
∴∠DFE=∠M,
在△DFE与△CME中,,
∴△DFE≌△CME(AAS),
∴EF=EM=FM,
∵∠FBM=90°,
∴BE=FM,
∴EF=BE,
∵EF≠DE,
故②错误;
∵EF=EM,
∴S△BEF=S△BME,
∵△DFE≌△CME,
∴S△DFE=S△CME,
∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.
故答案为:①③.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△DEF≌△CME是解题关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;
(2) 即m的值为0,方程的另一个根为0.
【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t,利用根与系数的关系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.
【详解】
(1)证明:
△=(m+2)2−4×1⋅m=m2+4,
∵无论m为何值时m2≥0,
∴m2+4≥4>0,
即△>0,
所以无论m为何值,方程总有两个不相等的实数根.
(2)设方程的另一个根为t,
根据题意得2+t= ,2t=m,
解得t=0,
所以m=0,
即m的值为0,方程的另一个根为0.
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.
25、(1);(2)速度为:km/h,a=;(3)接下来一段路程他的速度至少为13.5km/h.
【解析】
(1)根据图象可知,点(0,8)和点(,5)在函数图象上,利用待定系数法求解析式即可;
(2)由题意,可知点(a,3)在(1)中的图象上,将其代入求解即可;
(3)设接下来一段路程他的速度为xkm/h,利用
【详解】
解:(1)设小林从起点跑向饮水补给站的过程中s与t的函数关系式为:s=kt+b,
(0,8)和(,5)在函数s=kt+b的图象上,
∴,解得:,
∴s与t的函数关系式为:;
(2)速度为:(km/h),
点(a,3)在上,
∴,解得:;
(3)设接下来一段路程他的速度为xkm/h,
根据题意,得:x≥3,
解得:x≥13.5
答:接下来一段路程他的速度至少为13.5km/h.
本题主要考查一次函数的应用,解决第(3)题的关键是明确,要在8点55之前到达,需满足在接下来的路程中,速度×时间≥路程.
26、 (1)y=t(0≤t≤) (2)6小时
【解析】
(1) 将点代入函数关系式, 解得, 有
将代入, 得, 所以所求反比例函数关系式为;
再将代入, 得,所以所求正比例函数关系式为.
(2) 解不等式, 解得,
所以至少需要经过6小时后,学生才能进入教室.
题号
一
二
三
四
五
总分
得分
批阅人
2025届十堰市重点中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届十堰市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届湖北省随州市名校九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省宜昌市秭归县九上数学开学质量检测模拟试题【含答案】: 这是一份2024年湖北省宜昌市秭归县九上数学开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。