


湖北省武汉十二中学2025届九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份湖北省武汉十二中学2025届九年级数学第一学期开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列条件中能构成直角三角形的是( )
A.a=3,b=4,c=6B.a=5,b=6,c=7
C.a=6,b=8,c=9D.a=5,b=12,c=13
2、(4分)矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为( )
A.20 B.56 C.192 D.以上答案都不对
3、(4分)设a、b是直角三角形的两条直角边,若该三角形的周长为12,斜边长为5,则ab的值是( )
A.6B.8C.12D.24
4、(4分)平行四边形边长为和,其中一内角平分线把边长分为两部分,这两部分是( )
A.和B.和C.和D.和
5、(4分)如果,那么( )
A.B.C.D.x为一切实数
6、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
A.这1000名考生是总体的一个样本B.近2万名考生是总体
C.每位考生的数学成绩是个体D.1000名学生是样本容量
7、(4分)为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:
则该校排球队21名同学身高的众数和中位数分别是(单位:cm)( )
A.185,178B.178,175C.175,178D.175,175
8、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是( )
A.中位数是7B.平均数是9C.众数是7D.极差为5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
10、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
11、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.
12、(4分)如图,为的中位线,平分,交于,,则的长为_______。
13、(4分)如图,在平面直角坐标系中,有A(﹣3,4)、B(﹣1,0)、C(5,10)三点,连接CB,将线段CB沿y轴正方向平移t个单位长度,得到线段C1B1,当C1A+AB1取最小值时,实数t=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,
①求证:AB=DE;
②若AB=3,BF=5,求△BCE的周长.
15、(8分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
16、(8分)如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.
(1)求证:△CEF≌△AEF;
(2)联结DE,当BD=2CD时,求证:AD=2DE.
17、(10分)在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;
(1)这次调查获取的样本容量是 ;
(2)由统计图可知,这次调查获取的样本数据的众数是 ;中位数是 ;
(3)求这次调查获取的样本数据的平均数;
(4)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
18、(10分)关于的方程有两个不相等的实数根.
求实数的取值范围;
是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)数据1,2,3,4,5的方差是______.
20、(4分)如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.
21、(4分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是_____.
22、(4分)将直线向上平移2个单位得到直线_____________.
23、(4分)直线与轴的交点坐标为__.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.
(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.
(2)请给出最节省费用的租车方案.
25、(10分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:
(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm), 求y与x的关系式;
(2)每本字典的厚度为多少?
26、(12分) (1)分式化简()÷;
(2)若(1)中a为正整数,分式的值也为正整数,请直接写出所有符合条件的a的值
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由勾股定理的逆定理,判定的是直角三角形.
【详解】
A. 32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B. 52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C. 62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D. 52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.
2、C
【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.
详解:∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为20,
∴(3x)2+(4x)2=202,
解得:x=2,
∴矩形的两邻边长分别为:12,16;
∴矩形的面积为:12×16=1.
故选:C.
点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.
3、C
【解析】
由该三角形的周长为12,斜边长为5可知a+b+5=12,再根据勾股定理和完全平方公式即可求出ab的值.
【详解】
解:∵三角形的周长为12,斜边长为5,
∴a+b+5=12,
∴a+b=7,①
∵a、b是直角三角形的两条直角边,
∴a2+b2=52,②
由②得a2+b2=(a+b)2﹣2ab=52
∴72﹣2ab=52
ab=12,
故选:C.
本题考查勾股定理和三角形的周长以及完全平方公式的运用,解题的关键是熟练掌握勾股定理以及完全平方公式.
4、C
【解析】
作出草图,根据角平分线的定义求出∠BAE=45°,然后判断出△ABE是等腰直角三角形,然后求出BE=AB,再求出CE即可得解.
【详解】
解:如图,
∵AE平分∠BAD,
∴∠BAE=45°,
又∵∠B=90°,
∴△ABE是等腰直角三角形,
∴BE=AB=10cm,
∴CE=BC-AB=15-10=5cm,
即这两部分的长为5cm和10cm.
故选:C.
本题考查了矩形的性质,角平分线的定义,熟记性质判断出△ABE是等腰直角三角形是解题的关键.
5、B
【解析】
∵,
∴x≥0,x-6≥0,
∴.
故选B.
6、C
【解析】
试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.
考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.
7、D
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:因为175出现的次数最多,
所以众数是:175cm;
因为第十一个数是175,
所以中位数是:175cm.
故选:D.
本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
8、A
【解析】
根据中位数.平均数.极差.众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:,
则中位数为8,平均数为,众数为7,极差为,
故选A.
本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
10、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
11、
【解析】
设y=kx,把点(1,﹣2)代入即可(答案不唯一).
【详解】
设y=kx,把点(1,﹣2)代入,得
k=-2,
∴(答案不唯一).
故答案为:.
本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
12、
【解析】
根据三角形中位线定理得到EF=BC=6,根据平行线的性质和角平分线的定义证明ED=EB,计算即可.
【详解】
∵EF为△ABC的中位线,
∴EF∥BC,EF=BC=6,
∴∠EDB=∠DBC,
∵BD平分∠ABC,
∴∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴ED=EB=AB=4,
∴DF=EF−ED=2,
故答案为:2
此题考查三角形中位线定理,解题关键在于得到EF=BC=6
13、
【解析】
平移后的点B'(﹣1,t),C'(5,10+t),C1A+AB1取最小值时,A,B',C'三点在一条直线上.
【详解】
解:将B(﹣1,0)、C(5,10)沿y轴正方向平移t个单位长度,
B'(﹣1,t),C'(5,10+t),
C1A+AB1取最小值时,A,B',C'三点在一条直线上,
∴,
∴t=;
故答案为;
考查最短距离问题,平面坐标变换;掌握平面内坐标的平移变换特点,利用三角形中两边之和大于第三边求最短距离是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、①见解析②1
【解析】
①利用平行四边形的性质∠A=∠FDE,∠ABF=∠E,结合AF=DF,可判定△ABF≌△DEF,即可得出AB=DE;
②利用角平分线以及平行线的性质,即可得到AF=AB=3,进而得出BC=AD=6,CD=AB=3,依据△ABF≌△DEF,可得DE=AB=3,EF=BF=5,进而得到△BCE的周长.
【详解】
解:如图①∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠A=∠FDE,∠ABF=∠E,
∵AF=DF,
∴△ABF≌△DEF,
∴AB=DE;
②∵BE平分∠ABC,
∴∠ABF=∠CBF,
∵AD∥BC,
∴∠CBF=∠AFB,
∴∠ABF=∠AFB,
∴AF=AB=3,
∴AD=2AF=6
∵四边形ABCD是平行四边形,
∴BC=AD=6,CD=AB=3,
∵△ABF≌△DEF,
∴DE=AB=3,EF=BF=5,
∴CE=6,BE=EF+BF=10,
∴△BCE的周长=BC+CE+BE=10+6+6=1.
本题主要考查了平行四边形的性质以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
15、(1)详见解析;(2)详见解析
【解析】
(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.
【详解】
解:(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)如图所示,平行四边形MBCN即为所求.
本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.
16、(1)见解析;(2)见解析.
【解析】
(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.
【详解】
证明:(1)∵∠ACB=90°,且E线段AB中点,
∴CE=AB=AE,
∵∠ACD=90°,F为线段AD中点,
∴AF=CF=AD,
在△CEF和△AEF中,
,
∴△CEF≌△AEF(SSS);
(2)连接DE,
∵点E、F分别是线段AB、AD中点,
∴EF=BD,EF∥BC,
∵BD=2CD,
∴EF=CD.
又∵EF∥BC,
∴四边形CFEDD是平行四边形,
∴DE=CF,
∵CF=AF=FD,
∴AD=2DE.
此题考查了全等三角形的判定与性质,中位线定理,直角三角形斜边上的中线等于斜边的一半,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
17、(1)1(2)30,2(3)平均数是2.5元(4)该校本学期计划购买课外书的总花费为220元
【解析】
(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;
(2)根据条形统计图中的数据以及众数和中位数的定义即可得到答案;
(3) 根据平均数的算法进行计算即可得到答案;
(4)计算总学生人数乘以平均花费即可得到答案.
【详解】
(1)6+12+10+8+4=1,
故答案为:1.
(2)众数是30元,中位数是2元,
故答案为:30,2.
(3)==2.5元,
答:平均数是2.5元.
(4)1000×2.5=220元,
答:该校本学期计划购买课外书的总花费为220元.
本题考查条形统计图、众数、中位数和平均数,解题的关键是掌握条形统计图、众数、中位数和平均数.
18、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
【解析】
由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.
首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.
【详解】
解:依题意得,
,
又,
的取值范围是且;
解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程的两根分别为,,
由根与系数的关系有:,
又因为方程的两个实数根之和等于两实数根之积的算术平方根,
,
,
由知,,且,
不符合题意,
因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
本题重点考查了一元二次方程的根的判别式和根与系数的关系。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据方差的公式计算.方差.
【详解】
解:数据1,1,3,4,5的平均数为,
故其方差.
故答案为:1.
本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、 2
【解析】
根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.
【详解】
解:∵,,
∴,
则,,……
所以,
故答案为:,2,.
本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.
21、乙
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=10.96,S乙2=5.96,S丙2=12.32,
∴S丙2>S甲2>S乙2,
∴包装茶叶的质量最稳定是乙包装机.
故答案为乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
22、
【解析】
利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.
【详解】
解:直线y=x-1向上平移2个单位,
得到直线的解析式为y=x-1+2=x+1.
故答案为:
本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.
23、,
【解析】
令y=0,求出x的值即可得出结论
【详解】
,
当时,,得,
即直线与轴的交点坐标为:,,
故答案为:,
此题考查一次函数图象上点的坐标特征,解题关键在于令y=0
二、解答题(本大题共3个小题,共30分)
24、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.
【解析】
(1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;
(2)设租乙种客车x辆,根据师生总数240人以及总费用2300元即可列出关于x的不等式组,从而得出x范围,之后进一步求出租车方案即可.
【详解】
(1)∵(辆)……15(人),
∴为保证师生都有车坐,汽车总数不能小于6辆;
又∵每辆车上至少有名教师,共有6名教师,
∴租车总数不可大于6,
故答案为:6,6,6;
(2)设租乙种客车x辆,
则:,且,
∴,
∵是整数,
∴,或,
设租车费用为y元,
则,
∴当时,y最小,且,
故租乙种客车2辆,甲种客车4辆时,所需费用最低.
本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.
25、(1)y=5x+85,(2)5cm.
【解析】
分析:(1)利用待定系数法即可解决问题;
(2)每本字典的厚度==5(cm).
详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则
,
解得:k=5,b=85
∴关系式为y=5x+85,
(2)每本字典的厚度==5(cm).
点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.
26、 (1);(2)a=3 .
【解析】
(1)根据分式的运算法则即可求出答案.
(2)根据题意即可求出答案.
【详解】
(1)原式=,
=
=;
(2)由题意可知:a+1=1或2或4,
且a+1≠0,a2﹣1≠0,a≠0,
∴a=3
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
身高(cm)
170
172
175
178
180
182
185
人数(个)
2
4
5
2
4
3
1
甲包装机
乙包装机
丙包装机
方差
10.96
5.96
12.32
甲种客车
乙种客车
载客量/(人/量)
30
租金/(元/辆)
400
280
相关试卷
这是一份2025届湖北省武汉市武汉一初慧泉中学数学九年级第一学期开学综合测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省武汉六中学上智中学九年级数学第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省武汉六中上智中学数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
