|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】
    立即下载
    加入资料篮
    湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】01
    湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】02
    湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】

    展开
    这是一份湖北省武汉市江岸区2024-2025学年九上数学开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果,则a的取值范围是( )
    A. B. C. D.
    2、(4分)点A、B、C、D在同一平面内,从AB∥CD,AB=CD,AD∥BC这三条件中任选两个能使四边形ABCD是平行四边形的选法有( )
    A.1种B.2种C.3种D.以上都不对
    3、(4分)下列成语描述的事件为随机事件的是( )
    A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
    4、(4分)设,a在两个相邻整数之间,则这两个整数是( )
    A.1和2B.2和3C.3和4D.4和5
    5、(4分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
    A.AB∥DC,AD∥BCB.AB=DC,AD=BC
    C.AO=CO,BO=DOD.AB∥DC,AD=BC
    6、(4分)下列计算正确的是( )
    A.B.=3C.D.
    7、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD的度数是( )
    A.22°B.29°C.32D.61°
    8、(4分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是( )
    A.∠A=∠BB.∠A=∠CC.AC=BDD.AB⊥BC
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是 .
    10、(4分)若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.
    11、(4分)如果最简二次根式与是同类二次根式,那么a=________.
    12、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
    13、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)若一次函数不经过第三象限,求m、n的取值范围;
    15、(8分)如图,在平行四边形的对角线上存在,两个点,且,试探究与的关系.
    16、(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
    根据上述信息,解答下列各题:
    ×
    (1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
    (2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
    (3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
    根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
    17、(10分)已知关于x的一元二次方程总有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若此方程的两根均为正整数,求正整数m的值.
    18、(10分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
    (1)求出三点的坐标.
    (2)求直线的函数表达式.
    (3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
    20、(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.
    21、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
    22、(4分)如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.
    23、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.
    (1)在图①中,判断和形状.(填空)_______________________________________
    (2)在图②中,判断四边形的形状,并说明理由.
    25、(10分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段、折线分别表示两车离甲地的距离(单位:千米)与时间(单位:小时)之间的函数关系.
    (1)线段与折线中,______(填线段或折线)表示货车离甲地的距离与时间之间的函数关系.
    (2)求线段的函数关系式(标出自变量取值范围);
    (3)货车出发多长时间两车相遇?
    26、(12分)如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
    (1)求点的坐标;
    (2)连接,判定四边形的形状,并说明理由;
    (3)在直线上有一点,使得,求点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:根据二次根式的性质1可知:,即故答案为B..
    考点:二次根式的性质.
    2、B
    【解析】
    分别从3个条件中选取2个,共3种情况:若选AB∥CD,AB=CD,若选AB∥CD,AD∥BC,若选AB=CD,AD∥BC,逐一利用平行四边形的判定方法验证即可.
    【详解】
    若选AB∥CD,AB=CD,
    ∵AB∥CD,AB=CD,
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);
    若选AB∥CD,AD∥BC,
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);
    若选AB=CD,AD∥BC,不能说明四边形ABCD是平行四边形;
    故选:B.
    本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    3、B
    【解析】试题解析:水涨船高是必然事件,A不正确;
    守株待兔是随机事件,B正确;
    水中捞月是不可能事件,C不正确
    缘木求鱼是不可能事件,D不正确;
    故选B.
    考点:随机事件.
    4、C
    【解析】
    首先得出的取值范围,进而得出-1的取值范围.
    【详解】
    ∵,
    ∴,
    故,
    故选C.
    此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
    5、D
    【解析】
    根据平行四边形判定定理进行判断:
    A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;
    B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;
    C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;
    D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.
    故选D.
    考点:平行四边形的判定.
    6、D
    【解析】
    根据二次根式的运算法则逐一计算可得.
    【详解】
    解:A、、不是同类二次根式,不能合并,此选项错误;
    B、3﹣=2,此选项错误;
    C、×=,此选项错误;
    D、=,此选项正确;
    故选D.
    本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.
    7、B
    【解析】
    只要证明OA=OD,根据三角形的外角的性质即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OA=OD,
    ∴∠OAD=∠ODA,
    ∵∠COD=∠CAD+∠ODA=58°,
    ∴∠CAD=29°
    故选B.
    本题考查矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    8、B
    【解析】
    【分析】由矩形的判定方法即可得出答案.
    【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;
    B、∠A=∠C不能判定这个平行四边形为矩形,错误;
    C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;
    D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,
    故选B.
    【点睛】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、直角三角形
    【解析】
    熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.即可得出.
    【详解】
    △ABC是直角三角形.
    本题考查了勾股定理的逆定理,熟练掌握定理是解题的关键.
    10、
    【解析】
    先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.
    【详解】
    解:解不等式组 得:
    由有且仅有三个整数解即:3,2,1.
    则:
    解得:
    本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.
    11、1
    【解析】
    根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.
    【详解】
    ∵最简二次根式与是同类二次根式
    ∴1+a=4a-2
    解得:a=1
    故答案为:1.
    本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.
    12、1.
    【解析】
    由S△BOE+S△COE=S△BOC即可解决问题.
    【详解】
    连接OE.
    ∵四边形ABCD是正方形,AC=10,
    ∴AC⊥BD,BO=OC=1,
    ∵EG⊥OB,EF⊥OC,
    ∴S△BOE+S△COE=S△BOC,
    ∴•BO•EG+•OC•EF=•OB•OC,
    ∴×1×EG+×1×EF=×1×1,
    ∴EG+EF=1.
    故答案为1.
    本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
    13、4≤m≤1
    【解析】
    设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.
    【详解】
    设平移后的直线解析式为y=-2x+m.
    ∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),
    ∴点B(3,2).
    ∵平移后的直线与边BC有交点,
    ∴,
    解得:4≤m≤1.
    本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    根据一次函数的图像不经过第三象限得到k<0,b≥0,故可求解.
    【详解】
    题意有:
    解得
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.
    15、见解析.
    【解析】
    由,得到BQ=DP,再根据平行四边形性质可得AD=BC,AD∥BC,可证△ADP≌△CBQ(SAS),即可得:AP=CQ,∠APD=∠CQB.可得∠APB=∠DQC,结论可证.
    【详解】
    解:AP=CQ,AP∥CQ;
    理由:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC
    ∴∠ADP=∠CBQ,
    ∵BP=DQ,
    ∴DP=BQ
    ∴△ADP≌△CBQ(SAS),
    ∴AP=CQ,∠APD=∠CQB.
    ∵∠APB=180°-∠APD,∠DQC=180°-∠CQB
    ∴∠APB=∠DQC
    ∴AP∥CQ.
    ∴AP=CQ,AP∥CQ
    本题考查了平行四边形的性质和全等三角形的判定和性质,能利用平行四边形找到证明全等的条件是解答此题的关键.
    16、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
    【解析】
    (1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
    (2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
    (1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
    【详解】
    (1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
    故答案为20,1.
    (2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
    答:该班级男生有2人.
    (1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
    ∵2>,∴男生比女生的波动幅度大.
    本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    17、(1)当m≠0和3时,原方程有两个不相等的实数根;(2)可取的正整数m的值分别为1.
    【解析】
    (1)利用一元二次方程的定义和判别式的意义得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,从而可得到m的范围;
    (2)利用求根公式解方程得到x1=1,x2=,利用此方程的两根均为正整数得到m=1或m=3,然后利用(1)的范围可确定m的值.
    【详解】
    解:(1)由题意得:m≠0且>0,
    ∴当m≠0和3时,原方程有两个不相等的实数根.
    (2)∵此方程的两根均为正整数,即,
    解方程得,.
    ∴可取的正整数m的值分别为1.
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    18、(1),,;(2);(3)存在,,,.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点B,C的坐标,联立直线l1,l2的解析式成方程组,通过解方程组可求出点A的坐标;
    (2)过点A作AF⊥y轴,垂足为点F,则△ACF≌△CDO,利用全等三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法即可求出直线CD的解析式;
    (3)分OC为对角线及OC为边两种情况考虑:①若OC为对角线,由菱形的性质可求出点P的纵坐标,再利用一次函数图象上点的坐标特征可求出点P1的坐标;②若OC为边,设点P的坐标为(m,2m+6),分CP=CO和OP=OC两种情况,利用两点间的距离公式可得出关于m的方程,解之取其负值,再将其代入点P的坐标中即可得出点P2,P3的坐标.
    【详解】
    (1)∵直线:,
    ∴当时,;当时,,
    ∴,,
    解方程组:得:,
    ∴点的坐标为;
    (2)如图1,作,则,
    ∵四边形为正方形,
    ∴,
    ∵,,
    ∴,

    ∴,
    ∴,
    ∵,,
    ∴,

    设直线的解析式为,
    将、代入得:,
    解得:,
    ∴直线的解析式为
    (3)存在
    ①以为对角线时,如图2所示,
    则PQ垂直平分CO,
    则点P的纵坐标为:,
    当y=3时,,解得:x=
    ∴点;
    ②以为边时,如图2,设点P(m,2m+6),
    当CP=CO时,,
    解得:(舍去)
    ∴,
    当OP=OC时,,
    解得:(舍去)

    综上所述,在平面内是否存在点,使得以、、、为顶点的四边形是菱形,,,.
    本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式、菱形的性质以及两点间的距离,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B,C的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分OC为对角线及OC为边两种情况,利用菱形的性质求出点P的坐标.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (−1,0).
    【解析】
    先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
    【详解】
    ∵直线y=kx+b和直线y=−3x平行,
    ∴k=−3,
    把(0,−3)代入y=−3x+b得b=−3,
    ∴直线解析式为y=−3x−3,
    当y=0时,−3x−3=0,解得x=−1,
    ∴直线y=−3x−3与x轴的交点坐标为(−1,0).
    故答案为(−1,0).
    此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
    20、(3,1)
    【解析】
    关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.
    【详解】
    由题意得点C(-3,1)的对应点C′的坐标是(3,1).
    考点:关于y轴对称的点的坐标
    本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.
    21、y=2x-1
    【解析】
    根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
    【详解】
    解:设平移后直线的解析式为y=2x+b.
    把(5,1)代入直线解析式得1=2×5+b,
    解得 b=-1.
    所以平移后直线的解析式为y=2x-1.
    故答案为:y=2x-1.
    本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
    22、
    【解析】
    如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.
    【详解】
    解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.
    设最小BF的解析式为y=kx+b,则有解得
    ∴直线BF的解析式为y=x-2,
    令y=0,得到x=2.
    ∴Q(2.0)
    故答案为(2,0).
    本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型
    23、3.1
    【解析】
    根据三角形的中位线定理解答即可.
    【详解】
    解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
    ∴.
    故答案为:3.1.
    本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.
    【解析】
    根据平行线的性质和折叠的性质解答即可;
    (2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.
    【详解】
    解:(1)和均为等腰三角形.
    ∵DE∥BC,
    ∴∠A′DE=∠BA′D, ∠B=∠ADE,
    ∵∠ADE=∠A′DE,
    ∴∠B=∠BA′D,
    ∴BD=A′D,
    ∴为等腰三角形;
    同理可证CE=A′E,即为等腰三角形.
    (2)四边形为平行四边形.
    理由:、分别是、的中点,
    ,.
    由旋转的性质可知,

    四边形是平行四边形.
    本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.
    25、(1)OA;(2)y=110x−195(2.5≤x≤4.5);(3)3.9小时.
    【解析】
    (1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;
    (2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
    (3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.
    【详解】
    (1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,
    理由:vOA=(千米/时),vBCD=
    ∵60<90轿车的平均速度大于货车的平均速度,
    ∴线段OA表示货车离甲地的距离y与时间x之间的函数关系.
    故答案为:OA;
    (2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
    ∵C(2.5,80),D(4.5,300)在其图象上,

    解得
    ∴CD段函数解析式:y=110x−195(2.5≤x≤4.5);
    (3)设线段OA对应的函数解析式为y=kx,
    300=5k,得k=60,
    即线段OA对应的函数解析式为y=60x,
    ,解得
    即货车出发3.9小时两车相遇.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    26、(1);(2)四边形是矩形,理由详见解析;(3)点坐标为或.
    【解析】
    (1)根据一次函数解析式求出A,B坐标,证明△AOB≌△BDC(AAS),即可解决问题.
    (2)证明EG=CD.EG∥CD,推出四边形EGDC是平行四边形,再根据轴即可解决问题.
    (3)先求出,设M(1,m),构建方程即可解决问题.
    【详解】
    (1)当时,,∴.∴.
    当时,,∴.∴.
    ∵,∴.
    在和中,
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    (2)∵是的垂直平分线,
    ∴点坐标为,点坐标为,∴.
    ∵,,
    ∴四边形是平行四边形.
    ∵轴,
    ∴平行四边形是矩形.
    (3)在中,,
    ∴,
    ∴.
    设点的坐标为,则.
    过作于,则.
    .
    解得:或.
    所以点坐标为或.
    本题属于一次函数综合题,考查了等腰三角形的性质,矩形的性质,一次函数的性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    题号





    总分
    得分
    统计量
    平均数(次)
    中位数(次)
    众数(次)
    方差

    该班级男生

    相关试卷

    2024年湖北省武汉市六中学数学九上开学经典试题【含答案】: 这是一份2024年湖北省武汉市六中学数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】: 这是一份2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉市武昌区数学九上开学考试模拟试题【含答案】: 这是一份2024-2025学年湖北省武汉市武昌区数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map