湖北省武汉市江岸区武汉七一华源中学2025届九年级数学第一学期开学考试试题【含答案】
展开
这是一份湖北省武汉市江岸区武汉七一华源中学2025届九年级数学第一学期开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面各问题中给出的两个变量x,y,其中y是x的函数的是
① x是正方形的边长,y是这个正方形的面积;
② x是矩形的一边长,y是这个矩形的周长;
③ x是一个正数,y是这个正数的平方根;
④ x是一个正数,y是这个正数的算术平方根.
A.①②③B.①②④C.②④D.①④
2、(4分)如图,RtABC中,∠ACB=90°,CD是高,∠A=30°,CD=cm则AB的长为( )
A.4cmB.6cmC.8cmD.10cm
3、(4分)如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为( )
A.13B.19C.25D.169
4、(4分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A.中位数是12.7%B.众数是15.3%
C.平均数是15.98%D.方差是0
5、(4分)二次根式、、、、、中,最简二次根式有( )个.
A.1 个B.2 个C.3 个D.4个
6、(4分)下列二次根式能与合并为一项的是( )
A.B.C.D.
7、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
8、(4分)下列等式从左边到右边的变形,是因式分解的是( )
A.(3﹣a)(3+a)=9﹣a2B.x2﹣y2+1=(x+y)(x﹣y)+1
C.a2+1=a(a+)D.m2﹣2mn+n2=(m﹣n)2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
10、(4分)已知是实数,且和都是整数,那么的值是________.
11、(4分)如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.
12、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
13、(4分)写出在抛物线上的一个点________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于的一元二次方程,
(1) 求证:无论m为何值,方程总有两个不相等的实数根;
(2) 当m为何值时,该方程两个根的倒数之和等于1.
15、(8分)如图,在△ABC中,AB=BC,∠ABC=84°,点D是AC的中点,DE∥BC,求∠EDB的度数.
16、(8分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
17、(10分)先化简,再求值:÷(1+),其中x=1.
18、(10分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.
20、(4分)若函数y=(m+1)x+(m2-1) (m为常数)是正比例函数,则m的值是____________。
21、(4分)因式分解:m2n+2mn2+n3=_____.
22、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.
23、(4分)已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数图象经过点(3 , 5) , (-4,-9)两点.
(1)求一次函数解析式;
(2)求这个一次函数图象和x轴、y轴的交点坐标.
25、(10分)如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.
(1)求证:四边形是平行四边形;
(2)若,,求四边形的周长.
26、(12分)如图,平行四边形中,点分别是的中点.求证.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意对各选项分析列出表达式,然后根据函数的定义分别判断即可得解.
【详解】
解:①、y= x2,y是x的函数,故①正确;
②、x是矩形的一边长,y是这个矩形的周长,无法列出表达式,y不是x的函数,故②错误;
③、y=±,每一个x的值对应两个y值,y不是x的函数,故③错误;
④、y=,每一个x的值对应一个y值,y是x的函数,故④正确.
故选D.
本题考查函数的概念,准确表示出各选项中的y、x的关系是解题的关键.
2、C
【解析】
根据直角三角形的性质求出AC,得到BC=AB,根据勾股定理列式计算即可.
【详解】
在Rt△ADC中,∠A=30°,
∴AC=1CD=4,
在Rt△ABC中,∠A=30°,
∴BC=AB,
由勾股定理得,AB1=BC1+AC1,即AB1=(AB)1+(4)1,
解得,AB=8(cm),
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
3、C
【解析】
试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.
考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.
4、B
【解析】
分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.
详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,
故中位数是:15.3%,故此选项错误;
B、众数是15.3%,正确;
C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;
D、∵5个数据不完全相同,
∴方差不可能为零,故此选项错误.
故选:B.
点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.
5、C
【解析】
直接利用最简二次根式的定义判断得出结论即可.
【详解】
在二次根式、、、、、中,最简二次根式有: 、、,共3个
故选:C
本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
6、A
【解析】
先根据二次根式的性质把化为最简二次根式,然后再逐项判断找出其同类二次根式即可.
【详解】
解:.
A、与是同类二次根式,能合并为一项,所以本选项符合题意;
B、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
C、与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
D、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意.
故选:A.
本题考查了二次根式的性质和同类二次根式的定义,属于基本知识题型,熟知同类二次根式的定义、熟练掌握二次根式的性质是解题的关键.
7、A
【解析】
试题分析:解不等式x+2>2得:x>﹣2;解不等式得:x≤2,所以次不等式的解集为:﹣2<x≤2.故选A.
考点:2.在数轴上表示不等式的解集;2.解一元一次不等式组.
8、D
【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.
【详解】
A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;
B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;
C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;
D、m2﹣2mn+n2=(m﹣n)2,正确.
故选:D.
此题主要考查了因式分解的意义,正确把握定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
10、
【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
【详解】
由题意设m+=a(a为整数),=b(b为整数),
∴m=a-,
∴=b,
整理得:
,
∴b2-8=1,8a-ab2=-b,
解得:b=±3,a=±3,
∴m=±3-.
故答案为±3-.
本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
11、.
【解析】
先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答
【详解】
菱形的边长为2,,
和都为正三角形,
,,
,而,
,
;
,,
,
即,
为正三角形;
设,
则,
当时,最小,
,
当与重合时,最大,
,
.
故答案为.
此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形
12、x>﹣3 x≤﹣
【解析】
当x>−3时,2x+6>0;
解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
故答案为x>−3;x⩽﹣.
13、(0,﹣4)(答案不唯一)
【解析】
把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.
【详解】
将(0,﹣4)代入,
得到 ,
故(0,﹣4)在抛物线上,
故答案为:(0,﹣4).
此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.
三、解答题(本大题共5个小题,共48分)
14、(2)见解析 (2)
【解析】
(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;
(2)利用根与系数的关系列式求得m的值即可.
【详解】
证明:△=(m+2)2-4×2×(m-2)=m2+2.
∵m2≥0,
∴m2+2>0,即△>0,
∴方程总有两个不相等的实数根.
(2)设方程的两根为a、b,
利用根与系数的关系得:a+b=-m-2,ab=m-2
根据题意得:=2,
即:=2
解得:m=-,
∴当m=-时该方程两个根的倒数之和等于2.
本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.
15、∠EDB=42°.
【解析】
试题分析:因为BD是∠ABC的平分线,所以∠ABD=∠CBD,所以∠DBC=84°÷2=42°,因为DE∥BC,所以∠EDB=∠DBC=42°.
试题解析:
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠DBC=84°÷2=42°,
∵DE∥BC,
∴∠EDB=∠DBC=42°.
点睛:掌握角平分线的性质以及平行线的性质.
16、BE∥DF,BE=DF,理由见解析
【解析】
证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.
【详解】
解:猜想:BE∥DF,BE=DF.
证明:如图1
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠1.
∴BE∥DF.
此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.
17、.
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可
【详解】
原式=
=
= ,
当x=1时,原式= .
此题考查分式的化简求值,解题关键在于利用完全平方公式和提取公因式法进行化简
18、见解析
【解析】
根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.
【详解】
证明:连接BD,
∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,
∴DM=DN,
∵DE垂直平分线BC,
∴DB=DC,
在Rt△DMB和Rt△DNC中,
∴Rt△DMB≌Rt△DNC(HL),
∴BM=CN.
本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC-BE=5-3=1,
故答案为:1.
本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.
20、2
【解析】
根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.
【详解】
解:依题意得:m2-2=2且m+2≠2.
解得m=2,
故答案是:2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.
21、n(m+n)1
【解析】
先提公因式n,再利用完全平方公式分解因式即可.
【详解】
解:m1n+1mn1+n3
=n(m1+1mn+n1)
=n(m+n)1.
故答案为:n(m+n)1
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
22、,
【解析】
根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,即可得出答案.
【详解】
∵四边形ABCD是矩形,
∴AO=CO,BO=DO,DC∥AB,DC=AB,
∴S△ADC=S△ABC=S矩形ABCD=×20=10,
∴S△AOB=S△BCO=S△ABC=×10=5,
∴S△ABO1=S△AOB=×5=,
∴S△ABO2=S△ABO1=,
S△ABO3=S△ABO2=,
S△ABO4=S△ABO3=,
∴S平行四边形AO4C5B=2S△ABO4=2×=,
平行四边形AOnCn+1B的面积为,
故答案为:;.
本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
23、,,
【解析】
根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
【详解】
解:①当如图1时,
∵C(0,2),A(1,0),B(4,0),
∴AB=3,
∵四边形ABMC是平行四边形,
∴M(3,2);
②当如图2所示时,同①可知,M(-3,2);
③当如图3所示时,过点M作MD⊥x轴,
∵四边形ACBM是平行四边形,
∴BD=OA=1,MD=OC=2,
∴OD=4+1=5,
∴M(5,-2);
综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).
本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)直线的解析式是y=2x-1;(2)与y轴交点(0,-1),与x轴交点.
【解析】
分析:(1)设函数解析式为y=kx+b,利用待定系数法可求得k、b的值,可求得一次函数解析式;
(2)分别令x=0和y=0,可求得图象与y轴和x轴的交点坐标.
详解:(1)设一次函数解析式为y=kx+b(k≠0),把点(3,5),(﹣4,﹣9)分别代入解析式可得:,解得:,∴一次函数解析式为y=2x﹣1;
(2)当x=0时,y=﹣1,当y=0时,2x﹣1=0,解得:x=,∴函数图象与坐标轴的交点为(0,﹣1),(,0).
点睛:本题主要考查待定系数法求函数解析式,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
25、(1)见解析;(2)
【解析】
(1)根据三角形中位线的性质得到DE∥AB,根据平行四边形的判定定理即可得到结论;
(2)连接AE,根据直角三角形的性质得到∠ABE=30°,解直角三角形即可得到结论
【详解】
(1)证明:如图,
∵ 点E、F分别是BC、AC边上的中点
又
四边形是平行四边形
(2)解:连接 ,
,点是边上的中点
,
在中,
由(1)知,四边形是平行四边形
四边形的周长
本题考查了平行四边形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.
26、见解析
【解析】
根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.
【详解】
证明:四边形是平行四边形,
,
点分别是的中点,
,
,
在和中,,
.
本题考查了平行四边形的判定和全等三角形的判定.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年湖北省武汉市七一(华源)中学九上数学开学调研试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉市江岸区七一华源中学数学九年级第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。