湖北省武汉市武昌区粮道街中学2025届九年级数学第一学期开学检测试题【含答案】
展开
这是一份湖北省武汉市武昌区粮道街中学2025届九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
2、(4分)在平行四边形ABCD中,∠BAD=110°,∠ABD=30°,则∠CBD度数为( )
A.30°B.40°C.70°D.50°
3、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )
A.①②B.①④C.①②④D.①②③④
4、(4分)如图,已知四边形是平行四边形,、分别为和边上的一点,增加以下条件不能得出四边形为平行四边形的是( )
A.B.C.D.
5、(4分)在直角坐标系中,点关于原点对称的点为,则点的坐标是( )
A.B.C.D.
6、(4分)的值等于( )
A.B.C.D.
7、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为( )
A.22B.11C.8D.5
8、(4分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )
A.5B.6C.7D.25
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知a=b﹣2,则代数式的值为_____.
10、(4分)如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.
11、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.
12、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
13、(4分)如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:
(1)这15位营销人员该月销售量的中位数是______,众数是______;
(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.
15、(8分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
若,,依题意补全图1,并直接写出的度数;
如图2,若是钝角,求的度数用含,的式子表示;
如图3,若,直接写出的度数用含,的式子表示.
16、(8分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.
(1)当点在线段中点时(如图①),易证,不需证明;
(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.
17、(10分)解不等式组:,并把它的解集在数轴上表示出来。
18、(10分)化简:;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数中,当时,<1;当时,>0则的取值范围是 .
20、(4分)小王参加某企业招聘测试,笔试、面试、技能操作得分分别为分、分、分,按笔试占、面试占、技能操作占计算成绩,则小王的成绩是__________.
21、(4分)有一组数据如下:3、7、4、6、5,那么这组数据的方差是_____.
22、(4分)在函数y=中,自变量x的取值范围是_________.
23、(4分)如图,在等腰直角中,,,D是AB上一个动点,以DC为斜边作等腰直角,使点E和A位于CD两侧。点D从点A到点B的运动过程中,周长的最小值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,从一个大矩形中挖去面积为和的两个小正方形.
(1)求大矩形的周长;
(2)若余下部分(阴影部分)的面积与一个边长为的正方形的面积相等,求的值.
25、(10分)2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.
(1)该商家购进的第一批纪念衫单价是多少元?
(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?
26、(12分)直线与轴、轴分别交于两点,以为边向外作正方形,对角线交于点,则过两点的直线的解析式是__________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
2、B
【解析】
解:在△ABD中,根据三角形内角和定理可求出∠ADB=40°,在根据两线平行内错角相等即可得∠CBD=∠ADB=40°.
故选B.
本题考查三角形内角和定理;平行四边形的性质;平行线的性质.
3、D
【解析】
①易证得△ABE≌△BCF(ASA),则可得结论①正确;
②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;
③根据△BCD是等腰直角三角形,可得选项③正确;
④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.
【详解】
解:①∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,
故①正确;
②由①知:△ABE≌△BCF,
∴∠FBC=∠BAE,
∴∠FBC+∠ABF=∠BAE+∠ABF=90°,
∴AE⊥BF,
故②正确;
③∵四边形ABCD是正方形,
∴BC=CD,∠BCD=90°,
∴△BCD是等腰直角三角形,
∴BD=BC,
∴CE+CF=CE+BE=BC=,
故③正确;
④∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,
在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,
∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF,
∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,
故④正确;
故选:D.
此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
4、B
【解析】
逐项根据平行四边形的判定进行证明即可解题.
【详解】
解: ∵四边形是平行四边形,
∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC, AB=CD,AD=BC,
A.若,易证ED=BF,∵ED∥BF,∴四边形为平行四边形,
B.若,由于条件不足,无法证明四边形为平行四边形,
C.若,∴,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,
D.若 ,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,
故选B
本题考查了平行四边形的判定与性质,可以针对各种平行四边形的判定方法,给出条件,本题可通过构造条件证△AEB≌△CFD来解题.
5、B
【解析】
根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.
【详解】
解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).
故选:B
本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.
6、A
【解析】
分析:根据平方与开平方互为逆运算,可得答案.
详解:=,
故选A.
点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.
7、B
【解析】
根据算术平均数的计算方法列方程求解即可.
【详解】
由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5
解得:x=11,
故选:B.
考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.
8、A
【解析】
解:利用勾股定理可得:,
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由已知等式得出,代入到原式计算可得答案.
【详解】
解:,
故答案为:1.
本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.
10、
【解析】
由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.
【详解】
解:∵O1和O2分别是这两个正方形的中心,
∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,
∴∠O1BO2=∠O1BC+∠O2BC=90°,
∴阴影部分的面积=×4×3=12.
故答案是:12.
本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.
11、3.
【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.
【详解】
因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为:3.
本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.
12、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
13、
【解析】
连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.
【详解】
如图,连接交于D,如图,
中,∵,
∴,
∵绕点A逆时针方向旋转到的位置,
∴,
∴垂直平分为等边三角形,
∴,
∴.
故答案为:.
考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,
三、解答题(本大题共5个小题,共48分)
14、(1)210,210;(2)合理,理由见解析
【解析】
(1)根据中位数和众数的定义求解;
(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.
【详解】
解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;
210出现的次数最多,则众数为210;
故答案为:210,210;
(2)合理;
因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
15、(1)补图见解析,;(2) ;(3) .
【解析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
(3)求出∠DAE度数,根据平行线的性质求出即可.
【详解】
解:如图1,
,,
,
是的平分线,
,
,
,
,
,
,
,
;
如图2,
中,,
.
,
是的平分线,
,
,
,
,
,
,
,
;
如图3,
中,,
,
,
是的平分线,
,
,
,
,
,
.
本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
16、(1)见解析;(2)成立,理由见解析.
【解析】
(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;
(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.
【详解】
解:在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
(2)图②结论:.图③结论:.
图②证明:如图②,在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
图③证明:如图③,在的延长线上取一点,使,连接.
∴.
∴.
∵四边形是正方形,
∴.
∴.
∴.
∴.
∴.
本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
17、-2
相关试卷
这是一份2024年湖北省武昌区粮道街中学九上数学开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武昌区粮道街中学九年级数学第一学期开学复习检测模拟试题【含答案】,共18页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。
这是一份湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了函数与抛物线的图象可能是,在中,,,则,下列事件中,属于随机事件的是等内容,欢迎下载使用。