|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】01
    湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】02
    湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】

    展开
    这是一份湖北省襄阳市襄城区2024年九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.等边三角形B.等腰直角三角形
    C.平行四边形D.菱形
    2、(4分)如图,在中,于点,,则的度数是( )
    A.B.C.D.
    3、(4分)若二次根式有意义,则a的取值范围是( )
    A.a<3B.a>3C.a≤3D.a≠3
    4、(4分)如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为( )
    (精确到.参考数据:)
    A.B.C.D.
    5、(4分)以下调查中,适宜全面调查的是( )
    A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况
    C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量
    6、(4分)已知两条对角线长分别为和的菱形,顺次连接它的四边的中点得到的四边形的面积是 ( )
    A.100B.48C.24D.12
    7、(4分)下列各式由左边到右边的变形中,属于分解因式的是( )
    A.B.
    C.D.
    8、(4分)顺次连接矩形四边中点得到的四边形一定是( )
    A.正方形B.矩形C.菱形D.不确定,与矩形的边长有关
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形中,,的平分线交于点,连接,若,则平行四边形的面积为__________.
    10、(4分)若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.
    11、(4分)在一个内角为60°的菱形中,一条对角线长为16,则另一条对角线长等于_____.
    12、(4分)分解因式___________
    13、(4分))如图,Rt△ABC中,C= 90,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).
    (1)求直线l2的解析式;
    (2)根据图象,求四边形OACD的面积.
    15、(8分)如图,已知互余,∠2与∠3互补,.求的度数.
    16、(8分)问题背景
    如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
    类比探究
    如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
    (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
    (2)△DEF是否为正三角形?请说明理由.
    (3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
    17、(10分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.
    请根据以上提供的信息,解答下列问题:
    (1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.
    (2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;
    (3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.
    18、(10分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
    20、(4分)如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=___.
    21、(4分)如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.

    22、(4分)若整数x满足|x|≤3,则使为整数的x的值是 (只需填一个).
    23、(4分)将直线平移,使之经过点,则平移后的直线是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形ABCD中,点M、N分别在线段DA、BA的延长线上,且BD=BN=DM,连接BM、DN并延长交于点P.
    求证:∠P=90°﹣∠C;
    25、(10分)解答下列各题:
    (1)计算:;
    (2)当时,求代数式的值.
    26、(12分)如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y=x﹣3的图象l交于点E(m ,﹣5).
    (1)m=__________;
    (2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;
    (3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    按照轴对称图形和中心对称图形的定义逐项判断即可.
    【详解】
    解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
    B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;
    C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
    D、菱形是轴对称图形,也是中心对称图形,故本选项正确.
    故选:D.
    本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.
    2、B
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对角相等,可得∠D=∠B=55°,又因为AE⊥CD,可得∠DAE=180°-∠D-∠AED=35°.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠D=∠B=55°,
    ∵AE⊥CD,
    ∴∠AED=90°,
    ∴∠DAE=180°-∠D-∠AED=35°.
    故选:B.
    本题考查了平行四边形的性质:平行四边形的对角相等,还考查了垂直的定义与三角形内角和定理.题目比较简单,解题时要细心.
    3、C
    【解析】
    根据被开方数是非负数,可得答案.
    【详解】
    解:由题意得,
    3−a⩾0,解得a⩽3,
    故选:C.
    本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
    4、D
    【解析】
    过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.
    【详解】
    过D作DE⊥AB于点E,

    ∵在D处测得旗杆顶端A的仰角为60°,
    ∴∠ADE=60°.
    ∴∠DAE=30°.
    ∵BC=DE=5m,
    AD=2DE=10
    ∴,
    ∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.
    故答案为:D
    本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.
    5、B
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】
    解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;
    B、调查某班学生的身高情况,适合全面调查,故B选项正确;
    C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;
    D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.
    故选:B.
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    6、D
    【解析】
    顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半.
    【详解】
    解:如图
    ∵E、F、G、H分别为各边中点
    ∴EF∥GH∥AC,EF=GH=AC,
    EH=FG=BD,EH∥FG∥BD
    ∵DB⊥AC,
    ∴EF⊥EH,
    ∴四边形EFGH是矩形,
    ∵EH=BD=3cm,EF=AC=4cm,
    ∴矩形EFGH的面积=EH×EF=3×4=12cm2,
    故选D.
    本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.
    7、B
    【解析】
    根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.
    【详解】
    A选项,不属于分解因式,错误;
    B选项,属于分解因式,正确;
    C选项,不属于分解因式,错误;
    D选项,不能确定是否为0,错误;
    故选:B.
    此题主要考查对分解因式的理解,熟练掌握,即可解题.
    8、C
    【解析】
    根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.
    【详解】
    如图,连接AC、BD.
    在△ABD中,
    ∵AH=HD,AE=EB,
    ∴EH=BD,
    同理FG=BD,HG=AC,EF=AC,
    又∵在矩形ABCD中,AC=BD,
    ∴EH=HG=GF=FE,
    ∴四边形EFGH为菱形.
    故选:C.
    本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.
    【详解】
    过点作于点,如图所示.
    ∵是的平分线,
    ∴.
    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴BC=BE,
    ∴,
    ∴.
    ∴平行四边形的面积为.
    故答案为:.
    此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.
    10、1
    【解析】
    一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.
    【详解】
    解:,
    是、、、的平均数,
    故答案为:1.
    此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
    11、16或
    【解析】
    画出图形,根据菱形的性质,可得△ABC为等边三角形,分两种情况讨论,由直角三角形的性质可求解.
    【详解】
    由题意得,∠ABC=60°,AC=16,或BD=16
    ∵四边形ABCD是菱形,
    ∴BA=BC,AC⊥BD,AO=OC,BO=OD,∠ABD=30°
    ∴△ABC是等边三角形,
    ∴AC=AB=BC
    当AC=16时,
    ∴AO=8,AB=16
    ∴BO=8
    ∴BD=16
    当BD=16时,
    ∴BO=8,且∠ABO=30°
    ∴AO=
    ∴AC=
    故答案为:16或
    本题考查了菱形的性质,解答本题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.
    12、
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    原式=2x(y2+2y+1)=2x(y+1)2,
    故答案为2x(y+1)2
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    13、4.
    【解析】
    正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.
    【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,
    ∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.
    ∴∠AOM+∠BOF=90°.
    又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.
    在△AOM和△BOF中,
    ∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
    ∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.
    又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.
    ∴OF=CF.∴△OCF为等腰直角三角形.
    ∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.
    ∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=﹣x+4;(2)1.
    【解析】
    (1)设直线l2的解析式为y=kx+b,已知点B、C的坐标,利用待定系数法求直线l2的解析式即可;(2)先求出点D、点A的坐标,从而求得OD、OA的长,再利用四边形OACD的面积=S△ODC+S△AOC即可求得四边形OACD的面积.
    【详解】
    (1)设直线l2的解析式为y=kx+b,
    ∵点C(2,2)、B(3,1)在直线l2上,
    ∴,
    解得, ,
    ∴直线l2的解析式为y=﹣x+4;
    (2)∵点D是直线l1:y=2x﹣2与x轴的交点,
    ∴y=0,0=2x﹣2,x=1,
    ∴D(1,0),
    ∴OD=1,
    ∵点A是直线l2与x轴的交点,
    ∴y=0,
    即0=﹣x+4,
    解得x=4,
    即点A(4,0),
    ∴OA=3,
    连接OC,
    ∴四边形OACD的面积=S△ODC+S△AOC=×4×2+×1×2=1.
    本题考查了待定系数法求函数的解析式及求四边形的面积,正确求得直线l2的解析式是解决问题关键.
    15、130°
    【解析】
    先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
    【详解】
    ∵∠2与∠3互补,∠3=140°,
    ∴AB∥CD,∠2=180°-140°=40°,
    又∵∠1和∠2互余,
    ∴∠1=90°-40°=50°,
    ∵AB∥CD,
    ∴∠4=180°-∠1=180°-50°=130°.
    本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
    16、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
    【解析】
    试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、
    (1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;
    (3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出结论.
    试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
    ∵△ABC是正三角形,
    ∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
    ∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,
    ∴∠ABD=∠BCE,
    在△ABD和△BCE中,

    ∴△ABD≌△BCE(ASA);
    (1)△DEF是正三角形;理由如下:
    ∵△ABD≌△BCE≌△CAF,
    ∴∠ADB=∠BEC=∠CFA,
    ∴∠FDE=∠DEF=∠EFD,
    ∴△DEF是正三角形;
    (3)作AG⊥BD于G,如图所示:
    ∵△DEF是正三角形,
    ∴∠ADG=60°,
    在Rt△ADG中,DG=b,AG=b,
    在Rt△ABG中,c1=(a+b)1+(b)1,
    ∴c1=a1+ab+b1.
    考点:1.全等三角形的判定与性质;1.勾股定理.
    17、90,见解析;(2)86;(3)选小何参加区级决赛.
    【解析】
    (1)根据条形图、扇形统计图中的数据可得出众数为90分,同时知道80分的人数为6人,即可补全条形图;(2)根据求平均数的方法计算平均数即可;(3)用加权平均数计算公式计算然后做比较即可.
    【详解】
    (1)90
    全条形统计图80分6人.
    (2).
    (3)小何得分:(分)
    小王得分:(分)
    ∴选小何参加区级决赛.
    本题考查了条形图、扇形统计图的制作特点、平均数、加权平均数的意义和求法,掌握平均数、加权平均数的计算方法是解答的关键.
    18、点B的坐标为,
    【解析】
    根据一次函数的性质,与y轴交于点B,即,得解;将A坐标代入解析式即可得解.
    【详解】
    当时,,点B的坐标为
    将点A的对应值,代入得,∴
    此题主要考查一次函数的性质,熟练掌握,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2.
    【解析】
    试题分析:根据菱形的面积等于对角线乘积的一半解答.
    试题解析:∵AC=4cm,BD=8cm,
    ∴菱形的面积=×4×8=2cm1.
    考点:菱形的性质.
    20、1.
    【解析】
    解:由题易知△ABC∽△A′B′C′,
    因为OA=2AA′,所以OA′=OA+AA′=3AA′,
    所以,
    又S△ABC=8,所以.
    故答案为:1.
    21、10
    【解析】
    当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.
    【详解】
    解:∵
    ∴当∠ABO=90°时,点O到顶点A的距离最大.
    则OA=AB=10.
    故答案是:10.
    本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.
    22、﹣2(答案不唯一)
    【解析】
    试题分析:∵|x|≤1,∴﹣1≤x≤1.
    ∵x为整数,∴x=﹣1,﹣2,﹣1,0,1,2,1.
    分别代入可知,只有x=﹣2,1时为整数.
    ∴使为整数的x的值是﹣2或1(填写一个即可).
    23、y=2x-1.
    【解析】
    根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.
    【详解】
    设平移后直线的解析式为y=2x+b.
    把(9,3)代入直线解析式得3=2×9+b,
    解得b=-1.
    所以平移后直线的解析式为y=2x-1.
    故答案为:y=2x-1.
    本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    分析:首先过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,由BD=BN=DM,可得BF与DG是∠DBN、∠MDB的平分线,又由四边形内角和为360°,可得∠P+∠FHG=180°,继而可得∠DHB=∠FHG=180°-∠P=90°+∠C,则可证得结论.
    详解:证明:过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,
    ∴∠FHG+∠P=180°,
    ∴∠DHB+∠P=180°,
    ∴∠DHB=180°﹣∠P,
    ∵BD=BN=DM,
    ∴BF与DG是∠DBN、∠MDB的平分线,
    ∴由四边形内角和为360°,可得∠P+∠FHG=180°,
    ∵∠DHB=180°﹣(∠GDB+∠FBD)=180°﹣(180°﹣∠DAB)=90°﹣∠DAB,
    ∵四边形ABCD是平行四边形,
    ∴∠DAB=∠C,
    ∴∠DHB=90°﹣∠C,
    ∵∠DHB=180°﹣∠P,
    ∴180°﹣∠P=90°+∠C,
    ∴∠P=90°﹣∠C;
    点睛:此题考查了平行四边形的性质、三角形内角和及外角的性质、角平分线的性质等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.
    25、(1)(2)1.
    【解析】
    (1)根据实数的运算法则即可化简;
    (2)根据整式的运算法则进行化简即可求解.
    【详解】
    解:(1)原式.
    (2)原式,将代入得
    此题主要考查实数的运算,解题的关键是熟知实数的运算法则与整式的运算.
    26、(1)-2;(2);(3)≤a≤或3≤a≤6.
    【解析】
    (1)根据点E在一次函数图象上,可求出m的值;
    (2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;
    (3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.
    【详解】
    解:(1)∵点E(m,−5)在一次函数y=x−3图象上,
    ∴m−3=−5,
    ∴m=−2;
    (2)设直线l1的表达式为y=kx+b(k≠0),
    ∵直线l1过点A(0,2)和E(−2,−5),
    ∴ ,解得,
    ∴直线l1的表达式为y=x+2,
    当y=x+2=0时,x=
    ∴B点坐标为(,0),C点坐标为(0,−3),
    ∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;
    (3)当矩形MNPQ的顶点Q在l1上时,a的值为;
    矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),
    ∴a的值为+2=;
    矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,
    矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),
    ∴a的值为4+2=6,
    综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.
    本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.
    题号





    总分
    得分
    批阅人
    学生姓名
    平时成绩
    期中成绩
    预选成绩
    小何
    80
    90
    100
    小王
    90
    100
    90
    相关试卷

    湖北省襄阳襄城区四校联考2024年九年级数学第一学期开学经典模拟试题【含答案】: 这是一份湖北省襄阳襄城区四校联考2024年九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】: 这是一份2025届湖北省襄阳市襄州区数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖北省襄阳市襄城区襄阳阳光学校数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届湖北省襄阳市襄城区襄阳阳光学校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map