湖南省2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BC
C.AB=CD,AD=BCD.∠DAB+∠BCD=180°
2、(4分)正比例函数y=3x的大致图像是( )
A.B.C.D.
3、(4分)若函数的解析式为y=,则当x=2时对应的函数值是( )
A.4B.3C.2D.0
4、(4分)抛物线y=x2﹣4x+5的顶点坐标是( )
A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)
5、(4分)下列各式中,运算正确的是( )
A.B.
C.2+=2D.
6、(4分)下列图案中,是中心对称图形的是( )
A.B. C. D.
7、(4分)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
A.B.1,
C.6,7,8D.2,3,4
8、(4分)若分式方程=2+的解为正数,则a的取值范围是( )
A.a>4B.a<4C.a<4且a≠2D.a<2且a≠0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某班30名学生的身高情况如下表:
则这30名学生的身高的众数是______.
10、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)
11、(4分)计算:的结果是_____.
12、(4分)如图是一张三角形纸片,其中,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为,则该矩形周长的最小值=________
13、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,,,点在轴上,且.
(1)求点的坐标,并画出;
(2)求的面积;
(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.
15、(8分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
(1)求3、4两月房价平均每月增长的百分率;
(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
16、(8分)如图,△ABC中,AB=10,BC=6,AC=8.
(1)求证:△ABC是直角三角形;
(2)若D是AC的中点,求BD的长.(结果保留根号)
17、(10分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=x+3垂直,求解析式.
18、(10分)已知:线段a,c.
求作:△ABC,使BC=a,AB=c,∠C=90°
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
20、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
21、(4分)使代数式有意义的的取值范围是________.
22、(4分)甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.
23、(4分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)|1-2|+.
(2)
25、(10分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.
(1)把统计图补充完整;
(2)直接写出这组数据的中位数;
26、(12分)先化简,再求值(1)已知,求的值.
(2)当时,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
2、B
【解析】
∵3>0,
∴图像经过一、三象限.
故选B.
点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时, y=kx的图象经过一、三象限;当k<0时, y=kx的图象经过二、四象限.
3、A
【解析】
把x=2代入函数解析式y=,即可求出答案.
【详解】
把x=2代入函数解析式y=得,
故选A.
本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.
4、A
【解析】
先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质即可求解.
【详解】
∵y=x2﹣4x+5=(x﹣2)2+1,
∴抛物线的顶点坐标为(2,1).
故选A.
本题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,本题还考查了利用配方法化二次函数的一般式化为顶点式.
5、A
【解析】
直接利用二次根式的性质分别化简计算得出答案.
【详解】
A. ,正确;
B. ,不正确;
C. 2+不能计算,不正确;
D. ,不正确;
故选A.
此题主要考查了二次根式的性质及二次根式的加减运算,正确掌握二次根式加减运算法则是解题关键.
6、D
【解析】
根据中心对称图形的定义逐一进行分析判断即可.
【详解】
A、不是中心对称图形,故不符合题意;
B、不是中心对称图形,故不符合题意;
C、不是中心对称图形,故不符合题意;
D、是中心对称图形,故符合题意,
故选D.
本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.
7、B
【解析】
试题解析:A.()2+()2≠()2,故该选项错误;
B.12+()2=()2,故该选项正确;
C.62+72≠82,故该选项错误;
D.22+32≠42,故该选项错误.
故选B.
考点:勾股定理.
8、C
【解析】
试题分析:去分母得:x=1x﹣4+a,
解得:x=4﹣a,
根据题意得:4﹣a>0,且4﹣a≠1,
解得:a<4且a≠1.
故选C.
考点:分式方程的解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.1.
【解析】
根据众数的定义,即出现次数最多的
【详解】
在这一组数据中1.1出现了8次,次数最多,故众数是1.1.
故答案为1.1.
此题考查众数,难度不大
10、①②④
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。
【详解】
解:
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又
∴点B到直线AE的距离为
故此选项不正确;
④如图,连接BD,
在Rt△AEP中,
∵AE=AP=1,
又
∵△APD≌△AEB,
= S正方形ABCD
故此选项正确.
∴正确的有①②④,
故答案为:①②④
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
11、1
【解析】
根据算术平方根的定义,直接得出表示21的算术平方根,即可得出答案.
【详解】
解:∵表示21的算术平方根,且
故答案是:1.
此题主要考查了算术平方根的定义,必须注意算术平方根表示的是一个正数的平方等于某个数.
12、
【解析】
分两种情况讨论,(1)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;(2)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;两个周长进行比较可得结果.
【详解】
(1)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
当时
当时
∵
∴矩形的周长最小值为
(2)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
所以和(1)的结果一致
综上所述:矩形周长的最小值为
本题考查了矩形的面积和一元二次方程,利用数形结合是常用的解题方法.
13、1
【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【详解】
解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=140°,
∴多边形的边数是:140°÷180°+2=3+2=1.
故答案为:1.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2) ×180°, n边形的外角和为:360°.
三、解答题(本大题共5个小题,共48分)
14、 (1)点的坐标为,,画图见解析;(2) 6;(3)点的坐标为或
【解析】
(1)分点B在点A的左边和右边两种情况解答;
(2)利用三角形的面积公式列式计算即可得解;
(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.
【详解】
(1)点B在点A的右边时,-1+3=2,
点B在点A的左边时,-1-3=-4,
所以,B的坐标为(2,0)或(-4,0),
如图所示:
(2)△ABC的面积=×3×4=6;
(3)设点P到x轴的距离为h,
则×3h=10,
解得h=,
点P在y轴正半轴时,P(0,),
点P在y轴负半轴时,P(0,-),
综上所述,点P的坐标为(0,)或(0,-).
本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.
15、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
【详解】
解:(1)设3、4两月房价平均每月增长的百分率为x,
根据题意得:10000(1+x)2=12100,
解得:x1=0.1=10%,x2=﹣2.1(舍去).
答:3、4两月房价平均每月增长的百分率为10%.
(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
∵24000>19000,
∴选择第一种方案更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
16、 (1)见解析;(2)2.
【解析】
分析:(1)直接根据勾股定理逆定理判断即可;
(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.
详解:(1)∵AB2=100, BC2=36, AC2=64,
∴AB2=BC2+AC2,
∴△ABC是直角三角形.
(2)CD=4,在Rt△BCD中,
BD=.
点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
17、(1)k=;(2)解析式为y=2x﹣2.
【解析】
试题分析: (1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;
(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.
试题解析:
解:(1)∵L1⊥L2,则k1•k2=﹣1,
∴2k=﹣1,
∴k=﹣;
(2)∵过点A直线与y=x+2垂直,
∴设过点A直线的直线解析式为y=2x+b,
把A(2,2)代入得,b=﹣2,
∴解析式为y=2x﹣2.
18、详见解析
【解析】
过直线m上点C作直线n⊥m,再在m上截取CB=a,然后以B点为圆心,c为半径画弧交直线n于A,则△ABC满足条件.
【详解】
解:如图,△ABC为所作.
本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙
【解析】
试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
考点:方差;折线统计图.
点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
21、x≥﹣1.
【解析】
根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.
【详解】
解:由题意得,1+x≥0,
解得x≥-1.
故答案为x≥-1.
本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
22、甲的波动比乙的波动大.
【解析】
根据方差的定义,方差越小数据越稳定,故可得到正确答案.
【详解】
解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故答案:甲的波动比乙的波动大.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
23、59
【解析】
由题意得,,解得a=59.
故答案为59.
二、解答题(本大题共3个小题,共30分)
24、(1)0;(2).
【解析】
(1)根据绝对值的意义、零指数幂的意义计算;
(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.
【详解】
(1)解:原式.
(2)解:原式.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、(1)见解析;(2)20.
【解析】
(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.
(2)根据中位数和众数的定义解答;
【详解】
解:(1)捐款金额为30元的学生人数=50-6-15-19-2=8(人),
把统计图补充完整如图所示;
(2)数据总数为50,所以中位数是第25、26位数的平均数,即(20+20)÷2=20.
本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了中位数的认识.
26、(1);(2)
【解析】
(1) 先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可; (2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x= 代入化简后的式子即可得到答案.
【详解】
(1)解:原式= (2分)=
==
当,原式==
(2)解:原式
当时,原式
本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.
题号
一
二
三
四
五
总分
得分
批阅人
身高(m)
1.45
1.48
1.50
1.53
1.56
1.60
人数
2
5
6
8
5
4
湖北省广水市2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份湖北省广水市2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。