湖南省衡阳市八中学2025届数学九上开学教学质量检测模拟试题【含答案】
展开这是一份湖南省衡阳市八中学2025届数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,AD=5,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为( )
A.B.C.D.
2、(4分)某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )
A.12(1+x)=17
B.17(1﹣x)=12
C.12(1+x)2=17
D.12+12(1+x)+12(1+x)2=17
3、(4分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )
A.B.C.D.
4、(4分)如图,菱形的对角线、相交于点,,,过点作于点,连接,则的长为( )
A.B.2C.3D.6
5、(4分)如图在平面直角坐标系中若菱形的顶点的坐标分别为,点在轴上,则点的坐标是( )
A.B.C.D.
6、(4分)下列计算错误的是( )
A.+=2B.C.D.
7、(4分)下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是( )
A.B.C.D.
8、(4分)当时,一次函数的图象大致是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的方程的一个根是x=-1,则_______.
10、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.
11、(4分)用4个全等的正八边形拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则的值为__________.
12、(4分)如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.
13、(4分)关于x的不等式组的解集为﹣3<x<3,则a=_____,b=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解一元二次方程
(1)2x+x-3=0 (2)
15、(8分) (1)如图1,要从电线杆离地面5m处向地面拉一条钢索,若地面钢索固定点A到电线杆底部B的距离为2m,求钢索的长度.
(2)如图2,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,求菱形的周长.
16、(8分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
17、(10分) “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
18、(10分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
(1)求证:四边形CDEF是菱形;
(2)若AB=2,BC=3,∠A=120°,求BP的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为
______________.
20、(4分)长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.
21、(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为_____.
22、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
23、(4分)如图,在菱形ABCD中,∠C=60º,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,
(1)写出y甲,y乙与x的函数关系式.
(2)学生人数在什么情况下,选择哪个旅行社合算?
25、(10分)(1)已知一次函数的图象经过,两点.求这个一次函数的解析式;并判断点是否在这个一次函数的图象上;
(2)如图所示,点D是等边内一点,,,,将绕点A逆时针旋转到的位置,求的周长.
26、(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.
【详解】
作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD,
即∠BAD=∠CAD′,
在△BAD与△CAD′中,
∴△BAD≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90∘
由勾股定理得DD′=,
∠D′DA+∠ADC=90∘
由勾股定理得CD′=,
∴BD=CD′= ,
故选:A.
此题考查勾股定理,解题关键在于作辅助线
2、C
【解析】
【分析】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.
【详解】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17.
故选C
【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.
3、D
【解析】
∵正比例函数且随的增大而减少,
在直线中,
∴函数图象经过一、三、四象限.
故选D.
4、C
【解析】
先证明△ABC为等边三角形,再证明OE是△ABC的中位线,利用三角形中位线即可求解.
【详解】
解:∵ABCD是菱形,
∴AB=BC,OA=OC,
∵∠ABC=60°,
∴△ABC为等边三角形,
∵,
∴E是BC中点,
∴OE是△ABC的中位线,
∴OE=AB,
∵,
∴OE=3;
故选:C.
本题考查了菱形的性质以及等边三角形判定和性质,证明△ABC为等边三角形是解答本题的关键.
5、B
【解析】
首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.
【详解】
∵菱形ABCD的顶点A、B的坐标分别为(-6,0)、(4,0),点D在y轴上,
∴AB=AO+OB=6+4=10,
∴AD=AB=CD=10,
∴,
∴点C的坐标是:(10,8).
故选:B.
本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.
6、B
【解析】
根据根式的运算性质即可解题.
【详解】
解:A,C,D计算都是正确的,
其中B项,只有同类根式才可以作加减法,所以B错误,
故选B.
本题考查了根式的运算,属于简单题,熟悉根式的运算性质是解题关键.
7、B
【解析】
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.
【详解】
A:是轴对称图形,但不是中心对称图形,故不符合题意;
B:是轴对称图形,也是中心对称图形,故符合题意;
C:不是轴对称图形,是中心对称图形,故不符合题意;
D:不是轴对称图形,也不是中心对称图形,故不符合题意;
故选:B.
本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.
8、A
【解析】
根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.
【详解】
解:∵k=1>0,
∴y随x的增大而增大,
又∵b<0,
∴函数图象与y轴交于负半轴.
故选A.
本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:
当k>0,b>0,这时此函数的图象经过一,二,三象限;
当k>0,b<0,这时此函数的图象经过一,三,四象限;
当k<0,b>0,这时此函数的图象经过一,二,四象限;
当k<0,b<0,这时此函数的图象经过二,三,四象限.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题分析:因为方程的一个根是x=-1,所以把x=-1代入方程得,所以,所以.
考点:一元二次方程的根.
10、<-1
【解析】
根据图象求出不等式的解集即可.
【详解】
由图象可得
当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方
故可得关于x的不等式-x+m>nx+4n的解集为
故答案为:<-1.
本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.
11、1
【解析】
根据正六边形的一个内角为120°,可求出正六边形密铺时中间的正多边形的内角,继而可求出n的值.
【详解】
解:两个正六边形拼接,一个公共点处组成的角度为240°,
故如果要密铺,则中间需要一个内角为120°的正多边形,
而正六边形的内角为120°,所以中间的多边形为正六边形,
故n=1.
故答案为:1.
此题考查了平面密铺的知识,解答本题的关键是求出在密铺条件下中间需要的正多边形的一个内角的度数,进而得到n的值,难度不大.
12、-1.
【解析】
根据反比例函数K的几何意义即可得到结果
【详解】
解:依题意得:
+=
解得:K=,
∵反比例函数图象在第2象限,
∴k=-1.
故答案为-1.
本题考查了反比例函数K的几何意义,正确掌握反比例函数K的几何意义是解题的关键.
13、-3 3
【解析】
,,
所以,
解得.
三、解答题(本大题共5个小题,共48分)
14、(1) (2)
【解析】
利用因式分解法求一元二次方程.
【详解】
解:(1)分解因式得:
解得
(2)移项得:
分解因式得:
解得:
本题考查了一元二次方程的解法,根据题选择合适的解法是解题的关键.
15、 (1)钢索的长度为m;(2)菱形ABCD的周长=16.
【解析】
(1)直接利用勾股定理得出AC的长即可;
(2)由三角形的中位线,求出BD=4,根据∠A=60°,得△ABD为等边三角形,从而求出菱形ABCD的边长.
【详解】
(1)如图1所示,由题意可得:AB=2m,BC=5m,
则AC==(m),
答:钢索的长度为m;
(2)∵E、F分别是AB、AD的中点,
∴EF=BD,
∵EF=2,
∴BD=4,
∵∠A=60°,
∴△ABD为等边三角形,
∴AB=BD=4,
∴菱形ABCD的周长=4×4=16,
此题考查勾股定理的应用;三角形中位线定理;菱形的性质,解题关键在于求出AC的长
16、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
17、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
18、 (1)证明见解析;(2)BP的值为.
【解析】
(1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;
(2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠EDF=∠DFC,
∵DF平分∠ADC,
∴∠EDF=∠CDF,
∴∠DFC=∠CDF,
∴CD=CF,
同理可得CD=DE,
∴CF=DE,且CF∥DE,
∴四边形CDEF为菱形;
(2)解:如图,过P作PG⊥BC于G,
∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,
∴△CEF为等边三角形,
∴CE=CF=2,
∴PC=CE=1,
∴CG=PC=,PG=PC=,
∴BG=BC﹣CG=3﹣=,
在Rt△BPG中,由勾股定理可得BP==,
即BP的值为.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4.3× 10-5
【解析】
解:0.000043=.故答案为.
20、1.
【解析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b==7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案为:1.
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
21、1
【解析】
试题分析:∵直角△ABC中,AC=,∠B=60°,
∴AB==1,BC==2,
又∵AD=AB,∠B=60°,
∴△ABD是等边三角形,
∴BD=AB=1,
∴CD=BC﹣BD=2﹣1=1.
故答案是:1.
考点:旋转的性质.
22、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
23、1
【解析】
先根据菱形的性质可得,再根据线段中点的定义可得,然后根据等边三角形的判定与性质可得,从而可得,最后根据菱形的周长公式即可得.
【详解】
四边形ABCD是菱形,
点E、F分别是AB、AD的中点
又
是等边三角形
则菱形ABCD的周长为
故答案为:1.
本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.
【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;
(2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.
【详解】
试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x =800x+1600;
(2)当<时,即:700x+2000<800x+1600
解得:x>4 ,
当>时,即:700x+2000>800x+1600
解得:x<4 ,
当=时,即:700x+2000=800x+1600
解得:x=4 ,
答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.
考点: 一次函数的应用.
25、(1)点P不在这个一次函数的图象上;(2)的周长.
【解析】
(1)先设出一次函数的解析式,把已知条件代入求得未知数的值即可求出解析式;再把点P(−1,1)代入解析式看是否成立;
(2)先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE=BD=14,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=10,然后计算△DEC的周长.
【详解】
解:(1)设一次函数的表达式为,
则,解得:,.
∴函数的解析式为:.
将点代入函数解析式,,
∴点P不在这个一次函数的图象上.
(2)为等边三角形,
,,
绕点A逆时针旋转到的位置,
,,,
为等边三角形,
,
的周长.
本题考查了一次函数图象上点的坐标特征以及待定系数法求解析式,要注意利用一次函数的特点,列出方程组,求出未知数即求得解析式.也考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
26、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届湖南省芷江县岩桥中学数学九上开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南省衡阳市逸夫中学九上数学开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省衡阳市名校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。