湖南省浏阳市浏阳河中学2024-2025学年数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
A.B.C.D.
2、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是( )
A.6B.5C.4D.3
3、(4分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为( )
A.4πB.4πC.8πD.8π
4、(4分)下列调查,比较适合使用普查方式的是( )
A.某品牌灯泡使用寿命B.长江水质情况
C.中秋节期间市场上的月饼质量情况D.乘坐地铁的安检
5、(4分)若有意义,则( )
A.a≤B.a<﹣1C.a≥﹣1D.a>﹣2
6、(4分)化简的结果是( )
A.2B.-4C.4D.±4
7、(4分)下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直
8、(4分)函数y=中自变量x的取值范围是( )
A.x>3B.x<3C.x≤3D.x≥﹣3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
10、(4分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:
则这组数据的中位数是_____.
11、(4分)在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?
12、(4分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.
13、(4分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
(1)判断四边形的形状,并说明理由,
(2)若,求的长,
15、(8分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,1),B点的横坐标为﹣1.
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使得y1>y2时,x的取值范围.
16、(8分)如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
17、(10分)计算:
(1)
(2)
(3)
(4).
18、(10分)如图,在□ABCD中,∠B=60°.
(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:△ABE是等边三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线交轴于点,交轴于点,是直线上的一个动点,过点作轴于点,轴于点,的长的最小值为__________.
20、(4分)当121、(4分)不等式x+3>5的解集为_____.
22、(4分)用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______
23、(4分)如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)2020年初,“新型冠状病毒”肆虐全国,武汉“封城”. 大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物. 某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.
(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?
(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元. 在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?
25、(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
26、(12分)节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某市规定如下用水收费标准:每户每月的用水量不超过6m3时,按a元/ m3收费;超过6m3时,超过的部分按b元/ m3收费.该市某户居民今年2月份的用水量为9m3,缴纳水费27元;3月份的用水量为11m3,缴纳水费37元.
(1)求a、b的值.
(2)若该市某户居民今年4月份的用水量为13.5 m3,则应缴纳水费多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
【详解】
∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°-∠A)=×140°=70°,
∵△EBD是由△ABC旋转得到,
∴旋转角为∠ABC=70°,
故选C.
本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
2、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
解:,是的中点,
.
故选:.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
3、D
【解析】
解:Rt△中,∠ACB=90°,,
∴AB=4,
∴所得圆锥底面半径为5,
∴几何体的表面积,
故选D.
4、D
【解析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
【详解】
A、某品牌灯泡使用寿命,具有破坏性,适宜于抽样调查,故A错误;
B、长江水质情况,所费人力、物力和时间较多,适宜于抽样调查,故B错误;
C、中秋节期间市场上的月饼质量情况,适宜于抽样调查,故C错误;
D、乘坐地铁的安检,适宜于全面调查,故D正确;
故选:D.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、C
【解析】
直接利用二次根式的定义计算得出答案.
【详解】
若 有意义,则a+1≥0,
解得:a≥﹣1.
故选:C.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
6、C
【解析】
根据算术平方根的性质直接进行计算即可.
【详解】
=|-1|=1.
故选:C.
本题考查的是算术平方根的定义,把化为|-1|的形式是解答此题的关键.
7、C
【解析】
矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
【详解】
A、菱形、矩形的内角和都为360°,故本选项错误;
B、对角互相平分,菱形、矩形都具有,故本选项错误;
C、对角线相等菱形不具有,而矩形具有,故本选项正确
D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,
故选C.
本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
8、B
【解析】
解:由题意得,1-x>0,
解得x<1.
故选:B.
本题考查函数自变量取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-1,2)
【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
【详解】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
故Q坐标为(-1,2).
故答案为:(-1,2).
此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
10、5吨
【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
表中数据为从小到大排列,吨处在第10位、第11位,为中位数,
故这组数据的中位数是吨.
故答案为:吨.
考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
11、
【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.
【详解】
设y与x的函数关系式为y=kx+b,由题意,得:
,
解得: .
故y与x之间的关系式为:y= x+14.1;
当x=4时,
y=0.1×4+14.1=16.1.
故答案为:16.1
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
12、 .
【解析】
由题意得OA=OA1=2,
∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的横坐标为,
故答案为:.
13、150°
【解析】
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
【详解】
解:连接PQ,
由题意可知△ABP≌△CBQ
则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°
本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1)四边形为菱形,见解析;(2)
【解析】
(1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
(2)根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
解: 四边形为菱形;
理由如下:
四边形为矩形,
四边形为平行四边形
由折叠的性质,则
四边形为菱形,
,
.
由得
设.
在,
解得:,
,
.
此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
15、(1)y1=x+2,y2= ;(2)由图象可知y1>y2时,x>1或﹣1<x<2.
【解析】
(1)根据待定系数法即可解决问题.
(2)观察图象y1>y2时,y1的图象在y2的上面,由此即可写出x的取值范围.
【详解】
解:(1)把点A(1,1)代入y2=,得到m=1,
∴y2=.
∵B点的横坐标为﹣1,
∴点B坐标(﹣1,﹣1),
把A(1,1),B(﹣1,﹣1)代入y1=kx+b得到
解得,
∴y1=x+2,y2=.
(2)由图象可知y1>y2时,x>1或﹣1<x<2.
本题考查反比例函数与一次函数的图象的交点,学会待定系数法是解决问题的关键,学会观察图象由函数值的大小确定自变量的取值范围,属于中考常考题型.
16、(1);;(2)或;(3)点P的坐标为(3,0)或(-5,0).
【解析】
(1)根据反比例函数的图象经过,利用待定系数法即可求出反比例函数的解析式;进而求得的坐标,根据、点坐标,进而利用待定系数法求出一次函数解析式;
(2)根据、的坐标,结合图象即可求得;
(3)根据三角形面积求出的长,根据的坐标即可得出的坐标.
【详解】
解:(1)反比例函数的图象经过,
.
反比例函数的解析式为.
在上,所以.
的坐标是.
把、代入.得:,
解得,
一次函数的解析式为.
(2)由图象可知:不等式的解集是或;
(3)设直线与轴的交点为,
把代入得:,
,
的坐标是,
为轴上一点,且的面积为10,,,
,
,
当在负半轴上时,的坐标是;
当在正半轴上时,的坐标是,
即的坐标是或.
本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.
17、(1);(2);(3);(4).
【解析】
(1)先进行二次根式的乘除运算,然后合并即可;
(2)先把各二次根式化简为最简二次根式,然后去括号合并即可;
(3)利用平方差公式和完全平方公式计算;
(4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)原式
;
(4)原式
.
故答案为(1);(2);(3);(4).
本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
18、(1)见解析;(1)见解析
【解析】
(1)作∠A的角平分线与边BC交于点E即可;
(1)根据平行四边形的性质即可证明△ABE是等边三角形.
【详解】
解:(1)如图
(1)如图,∵四边形是平行四边形,
∴,
∴∠1=∠1.
∵AE平分∠BAD,
∴∠1=∠3,
∴∠1=∠3,
∴AB=EB.
∵∠B=60°,
∴△ABE是等边三角形.
本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4.3
【解析】
连接OC,易知四边形OECD是矩形,所以OC=DE,当当OC⊥AB时,OC最短,即DE最短,在Rt△ABO中可以利用面积法求解OC最小值.
【详解】
解:连接OC,
∵∠CEO=∠EOD=∠ODC,
∴四边形OECD是矩形.
∴DE=OC.
当OC⊥AB时,OC最短,即DE最短.
∵直线交y轴于点A(0,3),交x轴于点B(-1,0),
∴OA=3,OB=1.
在Rt△AOB中,利用勾股定理可得
AB= = =2.
当OC与AB垂直时,
AO×BO=AB×OC,即3×1=2×OC,解得OC=4.3.
所以DE长的最小值为4.3.
故答案为:4.3.
本题考查一次函数图象上的点的坐标特征、勾股定理、矩形的判定和性质,解决点到直线的最短距离问题,一般放在三角形中利用面积法求高.
20、1
【解析】
根据二次根式的性质以及绝对值的性质进行化简,然后合并同类项即可.
【详解】
∵1∴a-2<0,a-1>0,
∴
=2-a+a-1
=1,
故答案为:1.
本题考查了二次根式的性质及化简,绝对值的性质,熟练掌握相关性质是解题的关键.
21、x>1.
【解析】
利用不等式的基本性质,把不等号左边的3移到右边,合并同类项即可求得原不等式的解集.
【详解】
移项得,x>5﹣3,
合并同类项得,x>1.
故答案为:x>1.
本题主要考查了一元一次不等式的解法,解不等式要依据不等式的基本性质.
22、3y2-y-1=0
【解析】
将分式方程中换成3y,换成,去分母即可得到结果.
【详解】
解:根据题意,得:3y-=1,
去分母,得:3y2-1=y,
整理,得:3y2-y-1=0.
故答案为:3y2-y-1=0.
本题考查了用换元法解分式方程.
23、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得 b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.
本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1元.
【解析】
(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.
【详解】
解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,
依题意得:,
解得:,
答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;
(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,
依题意得:18m+26(10−m)≥234,
解得:m≤,
又∵m为正整数,
∴m可以为1,2,3,
∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排2辆甲车,8辆乙车;方案3:安排3辆甲车,7辆乙车;
设总燃油费为w元,则w=2000m+2600(10−m)=−600m+26000,
∵k=−600,
∴w随m的增大而减小,
∴当m=3时,w取得最小值,最小值=−600×3+26000=1(元),
答:公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1.
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
25、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
26、(1);(2).
【解析】
(1)该市居民用水基本价格为a元/米1,超过6米1部分的价格为b元/米1,根据2月份和1月份的缴费情况列出a和b的二元一次方程组,求出a和b的值即可;
(2)直接根据(1)求出答案即可.
【详解】
解:⑴根据题意得
,
解得
答:该市居民用水基本价格为2元/米1,超过6米1部分的价格为5元/米1.
⑵ 6×2+(11.5-6)×5=49.5(元).
答:该市某居民今年4月份的用水量为11.5立方米,则应缴纳水费49.5元.
本题主要考查了二元一次方程组的应用,解答本题的关键是根据题意列出a和b的二元一次方程组,此题难度不大.
题号
一
二
三
四
五
总分
得分
批阅人
月用水量/吨
4
5
6
8
户数
5
7
5
3
湖南省浏阳市浏阳河中学2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份湖南省浏阳市浏阳河中学2024-2025学年九上数学开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省长沙市浏阳市浏阳河中学2023-2024学年数学九上期末质量检测模拟试题含答案: 这是一份湖南省长沙市浏阳市浏阳河中学2023-2024学年数学九上期末质量检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,抛物线与坐标轴的交点个数是等内容,欢迎下载使用。