|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】
    立即下载
    加入资料篮
    湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】01
    湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】02
    湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】

    展开
    这是一份湖南省株洲市第十九中学2024年九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列事件是必然事件的是( )
    A.乘坐公共汽车恰好有空座B.同位角相等
    C.打开手机就有未接电话D.三角形内角和等于180°
    2、(4分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是( )
    A.B.C.D.
    3、(4分)已知,是一次函数的图象上的两个点,则,的大小关系是
    A.B.C.D.不能确定
    4、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
    则这50名学生这一周在校的平均体育锻炼时间是( )
    A.6.2小时B.6.4小时C.6.5小时D.7小时
    5、(4分)如图,在ABCD中,∠A=70°,DC=DB,则∠CDB=( )
    A.70°B.60°C.50°D.40°
    6、(4分)下列计算正确的是( )
    A.B.
    C.D.
    7、(4分)下列调查中,最适合采用全面调查(普查)方式的是( )
    A.对重庆市初中学生每天阅读时间的调查
    B.对端午节期间市场上粽子质量情况的调查
    C.对某批次手机的防水功能的调查
    D.对某校九年级3班学生肺活量情况的调查
    8、(4分)若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为( )
    A.,2B.3,C.,D.3,2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)将矩形按如图所示的方式折叠,得到菱形,若,则菱形的周长为______.
    10、(4分)若为二次根式,则的取值范围是__________
    11、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
    12、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
    13、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
    成绩统计分析表
    (1)张明第2次的成绩为__________秒;
    (2)请补充完整上面的成绩统计分析表;
    (3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
    15、(8分)如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.
    (1)求四边形CEFB的面积;
    (2)试判断AF与BE的位置关系,并说明理由;
    (3)若∠BEC=15°,求AC的长.
    16、(8分)如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.
    (I)若 AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;
    (II)若 AE3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;
    (III)若AE8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.

    17、(10分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
    直接用含t的代数式分别表示:______,______;
    是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.
    如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
    18、(10分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
    20、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
    21、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.
    22、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
    23、(4分)如果关于x的方程没有实数根,则k的取值范围为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,,P,O分别为AD,BD的中点,延长PO交BC于点Q,连结BP,DQ,求证:四边形PBQD是菱形.
    25、(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.
    (1)设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)
    (2)若要求总运费不超过9000元,问共有几种调运方案?
    (3)求出总运费最低的调运方案,最低运费是多少?
    26、(12分)已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.
    (1)若m=4,n=2,请求出方程的根;
    (2)若m=n+3,试判断该一元二次方程根的情况.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件,
    故选D.
    2、B
    【解析】
    ∵AC>BC,
    ∴AC是较长的线段,
    根据黄金分割的定义可知:= ≈0.618,
    故A、C、D正确,不符合题意;
    AC2=AB•BC,故B错误,符合题意;
    故选B.
    3、C
    【解析】
    根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.
    【详解】
    ,是一次函数的图象上的两个点,且,

    故选:C.
    【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.
    4、B
    【解析】
    平均数是指在一组数据中所有数据之和再除以数据的个数.因此,
    这50名学生这一周在校的平均体育锻炼时间是=6.4(小时).故选B.
    5、D
    【解析】
    先根据平行四边形的性质得到∠C=70°,再根据DC=DB即可求∠CDB.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠C=∠A=70°,
    ∵DC=DB,∴∠CDB=180°-2∠C=40°,
    故选D.
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
    6、A
    【解析】
    利用二次根式的性质对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
    【详解】
    解:A、原式=4a2,所以A选项的计算正确;
    B、原式==5a,所以B选项的计算错误;
    C、原式=+=2,所以C选项的计算错误;
    D、与不能合并,所以D选项的计算错误.
    故选:A.
    本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    7、D
    【解析】
    A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
    B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
    C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
    D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
    故选D.
    8、C
    【解析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    点P(m,2)与点Q(3,n)关于原点对称,得
    m=-3,n=-2,
    故选:C.
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=3,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=3,CE=2BE=6,于是可得菱形AECF的周长.
    【详解】
    解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,
    ∴AD=AO,CO=BC,∠BCE=∠OCE,
    而AD=BC,
    ∴AC=2BC,
    ∴∠CAB=30°,
    ∴BC=AB=3,∠ACB=60°,
    ∴∠BCE=30°,
    ∴BE=BC=3,
    ∴CE=2BE=6,
    ∴菱形AECF的周长=4×6=1.
    故答案为:1
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.
    10、
    【解析】
    根据二次根式有意义的条件,被开方数大于或等于0,即可求m的取值范围.
    【详解】
    解:根据题意得:3-m≥0,
    解得.
    主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.
    11、
    【解析】
    连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
    【详解】
    解:如图,连接BF
    ∵△ABC为等边三角形,AD⊥BC,AB=6,
    ∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
    ∵△CEF为等边三角形
    ∴CF=CE,∠FCE=60°
    ∴∠FCE=∠ACB
    ∴∠BCF=∠ACE
    ∴在△BCF和△ACE中
    BC=AC,∠BCF=∠ACE,CF=CE
    ∴△BCF≌△ACE(SAS)
    ∴∠CBF=∠CAE=30°,AE=BF
    ∴当DF⊥BF时,DF值最小
    此时∠BFD=90°,∠CBF=30°,BD=3
    ∴DF=BD=
    故答案为:.
    本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
    12、1.
    【解析】
    多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据题意,得
    (n﹣2)•180=4360,
    解得:n=1.
    则此多边形的边数是1.
    故答案为1.
    13、(5,1)
    【解析】
    【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.
    【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,
    ∴所得的点的坐标为:(5,1),
    故答案为(5,1).
    【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)13.4;(2)13.3 ,13.3;(3)选择张明
    【解析】
    根据折线统计图写出答案即可
    根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    根据平均线一样,而张明的方差较稳定,所以选择张明.
    【详解】
    (1)根据折线统计图写出答案即可,即13.4;
    (2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3 ,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;
    (3)选择张明参加比赛.理由如下:
    因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.
    本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.
    15、(1)9;(2)BE⊥AF,理由详见解析;(3) ;
    【解析】
    (1)根据题意可得△ABC≌△EFA,BA∥EF,且BA=EF,根据一组对边平行且相等的四边形为平行四边形即可判定四边形AFBC为平行四边形,所以S△EFA=S△BAF=S△ABC=3,即可求得四边形EFBC的面积为9;(2))BE⊥AF,证明四边形EFBA为菱形,根据菱形的性质即可证得结论;(3)如上图,作BD⊥AC于D,已知∠BEC=15°,AE=AB,根据等腰三角形的性质可得∠EBA=∠BEC=15°,由三角形外角的性质可得∠BAC=2∠BEC=30°,在Rt△BAD中,AB=2BD,设BD=x,则AC=AB=2x,根据三角形的面积公式S△ABC=AC•BD列出方程,解方程求得x的值,即可求得AC的长.
    【详解】
    (1)由平移的性质得,
    AF∥BC,且AF=BC,△EFA≌△ABC,
    ∴四边形AFBC为平行四边形,
    S△EFA=S△BAF=S△ABC=3,
    ∴四边形EFBC的面积为9;
    (2)BE⊥AF,
    由(1)知四边形AFBC为平行四边形,
    ∴BF∥AC,且BF=AC,
    又∵AE=CA,
    ∴四边形EFBA为平行四边形,
    又∵AB=AC,
    ∴AB=AE,
    ∴平行四边形EFBA为菱形,
    ∴BE⊥AF;
    (3)如上图,作BD⊥AC于D,
    ∵∠BEC=15°,AE=AB,
    ∴∠EBA=∠BEC=15°,
    ∴∠BAC=2∠BEC=30°,
    ∴在Rt△BAD中,AB=2BD,
    设BD=x,则AC=AB=2x,
    ∵S△ABC=3,且S△ABC=AC•BD=•2x•x=x2,
    ∴x2=3,
    ∵x为正数,
    ∴x=,
    ∴AC=2.
    本题综合考查了平移的性质、平行四边形的判定与性质、菱形的判定与性质、等腰三角形及30°角直角三角形的性质等知识,熟练运用这些知识点是解决问题的关键.
    16、 (I) ;(II) 16或10;(III) .
    【解析】
    (I)根据已知条件直接写出答案即可.
    (II)分两种情况: 或讨论即可.
    (III)根据已知条件直接写出答案即可.
    【详解】
    (I) ;
    (II)∵四边形是矩形,∴,.
    分两种情况讨论:
    (i)如图1,
    当时,即是以为腰的等腰三角形.
    (ii)如图2,当时,过点作∥,分别交与于点、.
    ∵四边形是矩形,
    ∴∥,.
    又∥,
    ∴四边形是平行四边形,又,
    ∴□是矩形,∴,,即,
    又,
    ∴,,
    ∵,∴,
    ∴,
    在中,由勾股定理得:,
    ∴,
    在中,由勾股定理得:,
    综上,的长为16或10.
    (III) . (或).
    本题主要考查了四边形的动点问题.
    17、(1),;(2)详见解析;(3)2
    【解析】
    由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:
    ,即,从而解得:,
    (2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,
    (3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,
    设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,
    因此线段PQ中点M所经过的路径长为.
    【详解】
    由题意得,,,
    则,
    ,,
    ,
    ∽,
    ,即,
    解得:,
    故答案为:,,
    存在,
    ,
    当时,四边形PDBQ为平行四边形,
    ,
    解得:,
    则当时,四边形PDBQ为平行四边形,
    以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,
    由题意得:,
    当时,点的坐标为,
    当时,点的坐标为,
    设直线的解析式为:,
    则,
    解得:,
    直线的解析式为:,
    由题意得:点P的坐标为,点Q的坐标为,
    在运动过程中PQ的中点M的坐标为,
    当时,,
    点M在直线上,
    作轴于N,
    则,,
    由勾股定理得,,
    线段PQ中点M所经过的路径长为.
    本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.
    18、两船相距200,画图见解析.
    【解析】
    根据题意画出图形,利用勾股定理求解即可.
    【详解】
    解:如图所示,
    ∵甲船从港口出发,以80的速度向东行驶,
    ∴MA=80×2=160(km),
    ∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,
    ∴MB=80×1.5=120(km),
    ∴(km),
    ∴上午8:00时,甲、乙两船相距200km.
    本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①③④
    【解析】
    根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
    【详解】
    点,为定点,点,分别为,的中点,
    是的中位线,

    即线段的长度不变,故①符合题意,
    、的长度随点的移动而变化,
    的周长会随点的移动而变化,故②不符合题意;
    的长度不变,点到的距离等于与的距离的一半,
    的面积不变,故③符合题意;
    直线,之间的距离不随点的移动而变化,故④符合题意;
    的大小点的移动而变化,故⑤不符合题意.
    综上所述,不会随点的移动而改变的是:①③④.
    故答案为:①③④.
    本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
    20、17
    【解析】
    根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.
    【详解】
    依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,
    故三边长为3,7,7故周长为17.
    此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.
    21、13
    【解析】
    根据点的坐标利用勾股定理,即可求出点P到原点的距离
    【详解】
    解:在平面直角坐标系中,点P到原点O的距离为:,
    故答案为:13.
    本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.
    22、()
    【解析】
    设出大树原来高度,用勾股定理建立方程求解即可.
    【详解】
    设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.
    故答案为:().
    本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
    23、
    【解析】
    根据判别式的意义得到△=(-3)2-4×(-2k)<0,然后解不等式即可.
    【详解】
    根据题意得△=(-3)2-4×(-2k)<0,解得.故答案为.
    本题考查根的判别式和解不等式,解题的关键是掌握根的判别式和解不等式.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    根据四边相等的四边形是菱形即可判断
    【详解】
    证明:四边形ABCD是平行四边形,
    ,,



    ,,
    ,,

    四边形PBQD是菱形.
    本题考查菱形的判定、直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    25、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
    【解析】
    (1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
    (2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
    (3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
    【详解】
    解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
    总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
    =200x+8600(0≤x≤6).
    (2)200x+8600≤9000
    解得x≤2
    共有3种调运方案
    方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
    方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
    方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
    (3)w=200x+8600
    k>0,
    所以当x=0时,总运费最低.
    也就是从B市调运到C市0台,D市6台;
    从A市调运到C市10台,D市2台;最低运费是8600元.
    本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
    26、(1)x1=x2=﹣2;(2)当m=n+3时,该一元二次方程有两个不相等的实数根.
    【解析】
    (1)把m、n的值代入方程,求出方程的解即可;
    (2)先把m=n+3代入方程,再求出△的值,再判断即可.
    【详解】
    (1)把m=4,n=2代入方程x2+mx+2n=0得:x2+4x+4=0,
    解得:x1=x2=﹣2;
    即方程的根是x1=x2=﹣2;
    (2)∵m=n+3,方程为x2+mx+2n=0,
    ∴x2+(n+3)x+2n=0,
    △=(n+3)2﹣4×1×2n=n2﹣2n+9=(n﹣1)2+8,
    ∵不论m为何值,(n﹣1)2+8>0,
    ∴△>0,
    所以当m=n+3时,该一元二次方程有两个不相等的实数根.
    本题考查了一元二次方程的解法,以及一元二次方程根的判别式,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    题号





    总分
    得分
    批阅人
    时间(小时)
    5
    6
    7
    8
    人数
    10
    15
    20
    5
    相关试卷

    黑龙江省大庆市第十九中学2025届数学九上开学联考试题【含答案】: 这是一份黑龙江省大庆市第十九中学2025届数学九上开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省大庆市第十九中学2025届数学九上开学联考试题【含答案】: 这是一份黑龙江省大庆市第十九中学2025届数学九上开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市第十九中学2024年九上数学开学复习检测模拟试题【含答案】: 这是一份福建省福州市第十九中学2024年九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map