湖南师大附中教育集团2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】
展开这是一份湖南师大附中教育集团2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若方程有增根,则a的值为( )
A.1B.2C.3D.0
2、(4分)一元二次方程x2﹣8x+20=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
3、(4分)如图,在菱形中,,,是边的中点,分别是上的动点,连接,则的最小值是( )
A.6B.C.D.
4、(4分)为了贯彻总书记提出的“精准扶贫”战略构想,铜仁市2017年共扶贫261800人,将261800用科学记数法表示为( )
A.2.618×105B.26.18×104C.0.2618×106D.2.618×106
5、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
6、(4分)下列运算正确的是( )
A.-=B.=2C.-=D.=2-
7、(4分)下列二次根式中是最简二次根式的是( )
A.B.C.D.
8、(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )
A.∠BAC=∠DCAB.∠BAC=∠DACC.∠BAC=∠ABDD.∠BAC=∠ADB
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=_____.
10、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______
11、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.
12、(4分)下列4个分式:①;②;③ ;④,中最简分式有_____个.
13、(4分)平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
根据以上图表信息,解答下列问题:
(1)表中a=___,b=___;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?
15、(8分)分解因式:2x2﹣12x+1.
16、(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
(1)求证:四边形ACFD是平行四边形.
(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
(3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
17、(10分)直线与抛物线交于、两点,其中在轴上,是抛物线的顶点.
(1)求与的函数解析式;
(2)求函数值时的取值范围.
18、(10分)已知正比例函数与反比例函数.
(1)证明:直线与双曲线没有交点;
(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;
(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
20、(4分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__.
21、(4分)当__________时,代数式取得最小值.
22、(4分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为_____.
23、(4分)计算:的结果是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
25、(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
根据图表信息,回答问题:
(1)直接写出表中,,,的值;
(2)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;
(3)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些。你认为谁的推断比较科学合理,更客观些,为什么?
26、(12分)当在什么范围内取值时,关于的一元一次方程的解满足?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先去分母,根据方程有增根,可求得x=2,再求出a.
【详解】
可化为
x-1-a=3(x-2),
因为方程有增根,
所以,x=2,
所以,2-1-a=0,
解得a=1.
故选A
本题考核知识点:分式方程的增根. 解题关键点:理解增根的意义.
2、A
【解析】
先计算出△,然后根据判别式的意义求解.
【详解】
∵△=(-8)2-4×20×1=-16<0,
∴方程没有实数根.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
3、D
【解析】
作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,点P、M即为使PE+PM取得最小值的点,由PE+PM=PE′+PM=E′M利用S菱形ABCD= AC•BD=AB•E′M求解可得答案.
【详解】
解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则此时点P、M使PE+PM取得最小值的,
其PE+PM=PE′+PM=E′M,
∵四边形ABCD是菱形,
∴点E′在CD上,
∵,BD=6,
∴AB=,
由S菱形ABCD=AC•BD=AB•E′M得××6=•E′M,
解得:E′M=,
即PE+PM的最小值是,
故选:D.
本题主要考查菱形的性质和轴对称−最短路线问题,解题的关键是掌握利用轴对称的性质求最短路线的方法.
4、A
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10)的记数法.
【详解】
解:261800=2.618×105.
故选A
本题考核知识点:科学记数法.解题关键点:理解科学记数法的定义.
5、A
【解析】
作DE⊥AB于E,
∵AB=10,S△ABD =15,
∴DE=3,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=3,
故选A.
6、A
【解析】
A. -= ,正确;B. =,故B选项错误;C. 与不是同类二次根式,不能合并,故C选项错误;D. =-2,故D选项错误,
故选A.
【点睛】本题考查了二次根式的加减运算以及二次根式的化简,熟练掌握运算法则和性质是解题的关键.
7、C
【解析】
直接利用最简二次根式的定义进行解题即可
【详解】
最简二次根式需满足两个条件:(1)被开放数的因数是整数,因式是整式;(2)被开方数中不含能开方的因数或因式
A选项不符合(2)
B选项不符合(2)
C选项满足两个条件
D选项不符合(2)
故选C
本题重点考察最简二次根式的判断,属于简单题型
8、C
【解析】
A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;
B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;
C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;
D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.
【详解】
解:∵AB=AC,∠BAC=100°,
∴∠B=∠C=(180°﹣100°)÷2=40°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠BAE=∠B=40°,
故答案为40°.
本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.
10、-3
kx+b>x+a>0的解集是一次函数y1=kx+b在y2=x+a的图象的上边部分,且在x轴上方部分,对应的x的取值范围,据此即可解答.
【详解】
解:观察图像可得:kx+b>x+a>0的解集是-3
11、1
【解析】
根据算术平均数的计算方法列方程求解即可.
【详解】
解:由题意得:
解得:.
故答案为1.
此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.
12、①④
【解析】
根据最简分式的定义逐式分析即可.
【详解】
①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.
故答案为2.
本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.
13、
【解析】
依题意得OP=2,OQ=3,在直角三角形OPQ中,由勾股定理得PQ= =.
【详解】
解:在直角坐标系中设原点为O,三角形OPQ为直角三角形,则OP=2,OQ=3,
∴PQ=.
故答案填:.
三、解答题(本大题共5个小题,共48分)
14、(1)12,0.12;(2)详见解析;(3)840.
【解析】
(1)被调查学生数为50人,当时,频率为,则频数为,故,当时,频数为6,则频率为。所以,.
(2)由(1)知,补全频数分布直方图即可.
(3)先求出参加活动超过6次的频率,再根据样本估计总体.
【详解】
(1)12,0.12;
(2)如图所示:
;
(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1500×(1-0.20-0.24)=840(人),
答:该校在上学期参加社区活动超过6次的学生有840人.
本题主要考查数据的处理和数据的分析.
15、2(x﹣3)2.
【解析】
原式提取公因式后,利用完全平方公式分解即可.
【详解】
原式=2(x2﹣6x+9)
=2(x﹣3)2.
此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、(1)见解析;(2)将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)
【解析】
(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24 cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.
【详解】
(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,
∴AD∥CF,AC∥DF.
∴四边形ACFD为平行四边形.
(2)解:由题易得BC==8(cm),△ABC的面积=24 cm2.
要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,
∴将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.
(3)解:将Rt△ABC向左平移4 cm,
则BE=AD=4 cm.
又∵BC=8 cm,∴CE=4 cm=AD.
由(1)知四边形ACFD是平行四边形,
∴AD∥BF.
∴∠HAD=∠HCE.
又∵∠DHA=∠EHC,
∴△DHA≌△EHC(AAS).
∴DH=HE=DE=AB=3 cm.
∴S△HEC=HE·EC=6 cm2.
∵△ABC≌△DEF,
∴S△ABC=SDEF.
由(2)知S△ABC=24 cm2,
∴S△DEF=24 cm2.
∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).
本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.
17、(1),;(2)
【解析】
(1)将代入求得m,确定一个解析式;由P点在x轴上,即纵坐标为0,确定P的坐标,再结合顶点式,即可确定第二个解析式;
(2)由(1)得到得解析式,然后列出不等式,解不等式即可.
【详解】
(1)把代入,
∴,
∴,
∴,
∴令,,
∴,
∴,
∵抛物线的顶点为,
∴设抛物线.
代入得,
∴,
即.
(2)由题意得:x+1<
解得:.
本题主要考查了待定系数法确定解析式和解不等式,其中解不等式是解答本题的关键.
18、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时, 当时, ;(3)当或时满足.
【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;
(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;
(3)取时,作出函数图象,观察图象可得到结论.
【详解】
(1)证明:将和这两函数看成两个不定方程,联立方程组得:
两边同时乘得,
整理后得
利用计算验证得:
∵ 所以
方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)
(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.
联立方程组得:
两边同时乘得,整理后得
因为直线与双曲线有且只有一个交点,
∴方程有且只有一个解,即:,
将方程对应的值代入判别式得:
解得
综上所述:当时,,
当时, ,
(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:
计算可得交点坐标,
要使,即函数的图象在函数图象的上方即可,
由图可知,当或时函数的图象在函数,
图象的上方,即当或时满足
本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
【详解】
∵2=1×2,∴F(2)=,故(1)是正确的;
∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
故答案为2.
本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
20、50°.
【解析】
解:∵四边形ABCD是平行四边形,∴DC∥AB,
∴∠C=∠ABF.
又∵∠C=40°,∴∠ABF=40°.
∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.
故答案为50°.
本题考查平行四边形的性质.
21、
【解析】
运用配方法变形x2-2x+3=(x-1)2+2;得出(x-1)2+2最小时,即(x-1)2=0,然后得出答案.
【详解】
∵x2-2x+3=x2-2x+1+2=(x-1)2+2,
∴当x-1=0时,(x-1)2+2最小,
∴x=1时,代数式x2-2x+3有最小值.
故答案为:1.
此题主要考查了配方法的应用,非负数的性质,得出(x-1)2+2最小时,即(x-1)2=0,这是解决问题的关键.
22、100(1+x)2=1
【解析】分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
详解:设该果园水果产量的年平均增长率为x,根据题意,得:
100(1+x)2=1,
故答案为:100(1+x)2=1.
点睛:本题考查了由实际问题抽象出一元二次方程;得到2013年产量的等量关系是解决本题的关键.
23、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
【解析】
(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
(1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
(3)根据两函数图象的上下位置关系,即可得出不等式的解集.
【详解】
(1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
∴k1=1×4=8,m==﹣1,
∴点B的坐标为(﹣4,﹣1).
将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
解得:,
∴k1=8,k1=1,b=1.
(1)当x=0时,y1=x+1=1,
∴直线AB与y轴的交点坐标为(0,1),
∴S△AOB=×1×4+×1×1=2.
(3)观察函数图象可知:
不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
25、(1);(2)二;一;(3)乙,理由见解析.
【解析】
(1)求出一班的成绩总和除以人数即可得出一班的平均分;观察图即可得出一班众数;把二班的成绩按照从小到大的顺序排列,即可得到二班的中位数;用二班合格的人数除以二班总人数即可得到二班的合格率;
(2)利用方差、优秀率、合格率的意义下结论即可;
(3)从平均数、众数、中位数对整体数据影响的情况考虑分析即可.
【详解】
解:(1)通过观察图中数据可得:
;
;
二班共有:人,
∵图中数据已经按照从小到大的顺序排列,
∴中位数为20、21的平均数,即:;
二班合格的人数有:人,总人数为40人,
∴,
故答案为:;
(2)一班方差为:2.11,二班方差为4.28,∴二班的成绩波动较大,
一班优秀率为20%,合格率为92.5%,二班的优秀率为10%,合格率为85%,∴一班的阅读水平更好些;
故答案为:二;一;
(3)乙同学的说法较合理,
平均分受极端值的影响,众数、中位数则是反映一组数据的集中趋势和平均水平,因此用众数和中位数进行分析要更加客观,二班的众数和中位数都比一班的要好,因此乙同学推断比较科学合理,更客观.
本题考查了众数、中位数、方差的意义及各个统计量反映数据的特征,准确把握各个统计量的意义是解决此类题目的关键.
26、
【解析】
先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.
【详解】
解:解方程得:,
关于的一元一次方程的解满足,
,
解得:,
所以当时,关于的一元一次方程的解满足.
本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于的不等式组是解此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
活动次数x
频数
频率
0
0.20
3
0.24
6
0.32
9
b
12
0.08
15
n
班级
平均分
方差
中位数
众数
合格率
优秀率
一班
2.11
7
92.5%
20%
二班
6.85
4.28
8
10%
相关试卷
这是一份湖南省长沙市湖南师大附中教育集团2024年数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长郡教育集团2024-2025学年数学九年级第一学期开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南师大附中教育集团九上数学开学联考试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。