淮南市重点中学2024年九年级数学第一学期开学质量检测试题【含答案】
展开
这是一份淮南市重点中学2024年九年级数学第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)把代数式因式分解,结果正确的是( )
A.B.C.D.
3、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为
A.B.C.D.
4、(4分)如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为
A.1B.C.D.
5、(4分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1B.1.5C.2D.2.5
6、(4分)某市一周日最高气温如图所示,则该市这周的日最高气温的众数是( )
A.25B.26C.27D.28
7、(4分)以下各组数中,能作为直角三角形的三边长的是
A.6,6,7B.6,7,8C.6,8,10D.6,8,9
8、(4分)如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD为底的等腰三角形时,CP的长为( )
A.2B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
10、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
11、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
12、(4分)已知y=1++,则2x+3y的平方根为______.
13、(4分)商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC
于点E、F、G,连接DE、DG.
(1)求证:四边形DGCE是菱形;
(2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.
15、(8分)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4 (A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
16、(8分)如图,四边形和四边形都是平行四边形.
求证:四边形是平行四边形.
17、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.
(1)求证:△ACM≌△BCN;
(2)求∠BDA的度数;
(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.
18、(10分)已知实数a,b,c在数轴上的位置如图所示,化简:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.
20、(4分)如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则___________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为_________ .
21、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
22、(4分)数据1,3,5,6,3,5,3的众数是______.
23、(4分)如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:
(x﹣1+)÷,其中x的值从不等式组的整数解中选取.
25、(10分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.
(1)求路灯A的高度;
(2)当王华再向前走2米,到达F处时,他的影长是多少?
26、(12分)判断代数式的值能否等于-1?并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),
∵k>0,b=1>0,
∴图象经过第一、二、三象限,不经过第四象限.
故选D.
考点:一次函数图象与几何变换.
2、C
【解析】
根据提公因式,平方差公式,可得答案.
【详解】
解:
=
=,
故选:C.
本题考查了因式分解,一提,二套,三检查,分解要彻底.
3、B
【解析】
【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】,,
,
▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,
是的中位线,
,
,
故选B.
【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.
4、D
【解析】
由AAS证明≌,得出,证出,连接DM,由HL证明≌,得出,因此,设,则,,在中,由勾股定理得出方程,解方程即可.
【详解】
解:四边形ABCD是矩形,
,,,,
,
,
,
,
,
在和中,,
≌,
,
,
,
在和中,
,
≌,
,
,
设,则,,
在中,由勾股定理得:,
解得:,
.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.
5、C
【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
【详解】
连接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
由折叠的性质得:Rt△ABG≌Rt△AFG,
在△AFE和△ADE中,
∵AE=AE,AD=AF,∠D=∠AFE,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则CG=3,EC=6−x.
在直角△ECG中,根据勾股定理,得:
(6−x)2+9=(x+3)2,
解得x=2.
则DE=2.
熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
6、A
【解析】
分析:根据众数是一组数据中出现次数最多的那个数求解即可.
详解: ∵25出现了3次,出现的次数最多,
∴周的日最高气温的众数是25.
故选A.
点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键. 众数可能没有,可能有1个,也可能有多个.
7、C
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.
【详解】
解:A、,不能构成直角三角形;
B、,不能构成直角三角形;
C、,能构成直角三角形;
D、,不能构成直角三角形;
故选C.
考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
8、C
【解析】
过O作OE⊥CD于E.根据菱形的对角线互相垂直平分得出OB,OC的长,AC⊥BD,再利用勾股定理列式求出CD,然后根据三角形的面积公式求出OE.在Rt△OED中,利用勾股定理求出ED.根据等腰三角形三线合一的性质得出PE ,利用CP=CD-PD即可得出结论.
【详解】
过O作OE⊥CD于E.
∵菱形ABCD的对角线AC、BD相交于点O,∴OBBD6=3,OA=OCAC3=2,AC⊥BD,由勾股定理得:CD1.
∵OC×OD=CD×OE,∴12=1OE,∴OE=2.2.在Rt△ODE中,DE===1.3.
∵OD=OP,∴PE=ED=1.3,∴CP=CD-PD=1-1.3-1.3=1.2=.
故选C.
本题考查了菱形的性质,等腰三角形的性质,勾股定理,求出OE的长是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
【详解】
设AB=CD=a,AD=BC=b
∵S△ABE=6
∴AB×BE=6
∴BE=
∴EC=b﹣
∵S△EFC=2
∴EC×CF=2
∴CF=
∴DF=a﹣
∵S△ADF=5
∴AD×DF=5
∴b(a﹣)=10
∴(ab)2﹣26ab+120=0
∴ab=20或ab=6(不合题意舍去)
∴矩形ABCD的面积为20
故答案为20
此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
10、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
11、
【解析】
利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
∴m-1<0,
∵m<1,
故答案为:m<1.
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
12、±2
【解析】
先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
【详解】
解:由题意得,,
,
,
,
的平方根为.
故答案为.
本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
13、8
【解析】
设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.
【详解】
设该文具盒实际价格可打x折销售,由题意得:
6×-4≥4×20%,
解得:x≥8,
故答案为8.
本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)BG= 5+5.
【解析】
(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;
(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.
【详解】
(1)∵CD平分∠ACB,
∴∠ACD=∠DCG
∵EG垂直平分CD,
∴DG=CC,DE=EC
∴∠DCG=∠GDC,∠ACD=∠EDC
∴∠EDC=∠DCG=∠ACD=∠GDC
∴CE∥DG,DE∥GC
∴四边形DECG是平行四边形
又∵DE=EC
∴四边形DGCE是菱形
(2)如图,过点D作DH⊥BC,
∵四边形DGCE是菱形,
∴DE=DG=GC=10,DG∥EC
∴∠ACB=∠DGB=30°,且DH⊥BC
∴DH=5,HG=DH=5
∵∠B=45°,DH⊥BC
∴∠B=∠BDH=45°
∴BH=DH=5
∴BG=BH+HG=5+5
本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.
15、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.
【解析】【分析】(1)根据题目中的书写步骤可以解答本题;
(2)根据题目中B到C可知没有考虑a=b的情况;
(3)根据题意可以写出正确的结论.
【详解】(1)由题目中的解答步骤可得,
错误步骤的代号为:C,
故答案为:C;
(2)错误的原因为:没有考虑a=b的情况,
故答案为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,
故答案为:△ABC是等腰三角形或直角三角形.
【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.
16、详见解析
【解析】
首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.
【详解】
∵四边形是平行四边形,
∴,
∵四边形是平行四边形,
∴,
∴,
∴四边形是平行四边形
此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.
17、(1)见解析;(2)∠BDA=90°;(3)AM=.
【解析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明
(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答
(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH= a,再求出a的值,利用勾股定理即可解答
【详解】
(1)∵∠ACB=90°,∠MCN=90°,
∴∠ACM=∠BCN,
在△MAC和△NBC中
,
∴△MAC≌△NBC(SAS).
(2)∵△MAC≌△NBC,
∴∠NBC=∠MAC
∵∠AEC=∠BED,
∴∠ACE=∠BDE=90°,
∴∠BDA=90°.
(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.
∵AQ=QM,
∴∠QAE=∠AMQ=15°,
∴∠EQH=30°,
∴AQ=QM=2a,QH= a,
∵∠ECH=60°,
∴CH= a,
∵AC=+1,
∴2a+a+a=+1,
∴a= ,
∵AM= =( + )a=.
此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等
18、
【解析】
直接利用数轴判断得出:a
相关试卷
这是一份阜阳市重点中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安庆市重点中学2025届数学九年级第一学期开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年宿迁市重点中学九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。