![吉林省延边2025届九上数学开学达标检测模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16281864/0-1729644348948/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省延边2025届九上数学开学达标检测模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16281864/0-1729644348986/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省延边2025届九上数学开学达标检测模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16281864/0-1729644349013/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
吉林省延边2025届九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )
A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
2、(4分)平行四边形具有的特征是( )
A.四个角都是直角B.对角线相等
C.对角线互相平分D.四边相等
3、(4分)一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )
A.1个B.2个C.3个D.4个
5、(4分)一次函数的图像不经过第四象限,那么的取值范围是( )
A.B.C.D.
6、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)若正比例函数的图象经过点和点,当时,,则的取值范围是( )
A.B.C.D.
8、(4分)下列运算结果正确的是( )
A.=﹣3B.(﹣)2=2C.÷=2D.=±4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:
①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)
10、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)
11、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
12、(4分)如图,∠A=90°,∠AOB=30°,AB=2,△可以看作由△AOB绕点O逆时针旋转60°得到的,则点与点B的距离为_______.
13、(4分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ,众数是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
(1)求出关于的函数解析式;
(2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
15、(8分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点.
(1)求一次函数解析式.
(2)求图象和坐标轴围成三角形面积.
16、(8分)如图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题:
(1)求汽车在前9分钟内的平均速度.
(2)汽车在中途停留的时间.
(3)求该汽车行驶30千米的时间.
17、(10分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2) 求△BDG的面积.
18、(10分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若函数y=x﹣1与的图象的交点坐标为(m,n),则的值为_____.
20、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
21、(4分)若分式 的值为零,则 _____.
22、(4分)用科学记数法表示______.
23、(4分)如图放置的两个正方形的边长分别为和,点为中点,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并写出它的所有非负整数解.
25、(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
26、(12分)计算:
(1);
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
∵AB=30,
∴OA2+OB2=182+242=900=302=AB2,
∴∠AOB=90°,
∵∠AOC=30°,
∴∠BOC=∠AOB-∠AOC=60°,
∴二号舰航行的方向是南偏东 60°,
故选C.
【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
2、C
【解析】
根据平行四边形的性质进行选择.
【详解】
平行四边形对角线互相平分,对边平行且相等,对角相等.
故选C
本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.
3、B
【解析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
【详解】
解:∵,
∴函数图象一定经过一、三象限;
又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限
故选B
此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
4、D
【解析】
试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
(4)S1=,S2=,S1=,∵,∴S1+S2=S1.
综上,可得:面积关系满足S1+S2=S1图形有4个.
故选D.
考点:勾股定理.
5、A
【解析】
根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.
【详解】
∵一次函数的图像不经过第四象限,
∴,
解得,
故选:A.
本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.
6、C
【解析】
直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
【详解】
解:∵点M(m,n)与点Q(−2,3)关于原点对称,
∴m=2,n=−3,
则点P(m+n,n)为(−1,−3),在第三象限.
故选:C.
此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
7、D
【解析】
试题解析:由题目分析可知:在正比例函数y=(1-4m)x中,y随x的增大而减小
由一次函数性质可知应有:1-4m<0,即-4m<-1,
解得:m>.
故选D.
考点:1.一次函数图象上点的坐标特征;2.正比例函数的定义.
8、B
【解析】
根据平方根和算术平方根的知识点进行解答得到答案.
【详解】
A. ,错误;
B. (﹣)2=2,正确;
C. ,错误;
D. ,错误;
故选B.
本题主要考查二次根式的性质与化简,仔细检查是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③
【解析】
①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;
②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;
③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;
④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.
【详解】
解:①∵函数开口向下,∴,
∵对称轴,,∴;
∵函数与y轴交点在y轴上半轴,∴,
∴;所以①正确;
②∵函数对称轴为,
∴,∴,
∵A(3,0)是函数与x轴交点,对称轴为,
∴函数与x轴另一交点为(-1,0);
∵当时,,
∴,②正确;
③∵函数对称轴为,
∴,
∴将带入可化为:,
∵,不等式左右两边同除a需要不等号变方向,可得:
,
即,此不等式一定成立,所以③正确;
④M(-3,)、N(6,)为函数图象上的两点,
∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,
∴,所以④错误.
故答案为①②③.
本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.
10、>
【解析】
根据一次函数的性质即可得答案.
【详解】
∵一次函数y=-3x+1中,-3<0,
∴函数图象经过二、四象限,y随x的增大而减小,
∵-4<1,
∴y1>y2,
故答案为:>
本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.
11、1
【解析】
首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
【详解】
解:连接AE,交BF于点O.
∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥BE,
∵EF∥AB,
∴四边形ABEF是平行四边形,
∵AF∥BE,
∴∠AFB=∠FBE,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠ABF=∠AFB,
∴AB=AF,
∴平行四边形ABEF是菱形,连接AE交BF于O,
∴AE⊥BF,OB=OF=3,OA=OE,
在Rt△AOB中,OA==4,
∴AE=2OA=8,
∴S菱形ABEF=•AE•BF=1.
故答案为1.
本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
12、1
【解析】
【分析】根据图形旋转的性质可得出△AOB≌△A′OB′,再由全等三角形的性质可得出∠A′OB′=30°,AB=1,再根据全等三角形的判定定理可得出△AOB≌△A′OB,由全等三角形的性质即可得出结论.
【详解】连接A′B,
∵△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,
∴△AOB≌△A′OB′,
∴OA=OA′,∠A′OA=60°,
∵∠AOB=30°,
∴∠A′OB=30°,
在△AOB与△A′OB中,
,
∴△AOB≌△A′OB,
∴A′B=AB=1,
故答案为:1.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,熟练掌握旋转的性质是解题的关键.
13、7 1
【解析】
根据中位数和众数的定义解答.
【详解】
解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;
数据1出现2次,次数最多,所以众数是1.
故填7;1.
【点击】
本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)拉手部分移动的距离为或.
【解析】
(1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;
(2)把代入(1)中所求的函数解析式,求出的值即可.
【详解】
解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,
当拉手由顶端向下运动时即返回时,.
综上所述:
(2)由题意可知:当
①,
②,
当吸水部分弯曲的角度为时,
拉手部分移动的距离为或
本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.
15、y=2x-1 s=
解:(1)设一次函数的解析式是y=kx+b.
根据题意得:
解得:
则直线的解析式是:y=2x-1.
(2)在直线y=2x+1中,令x=0,解得y=1;
令y=0,解得:x=-
则求图象和坐标轴围成三角形面积为××1=
【解析】(1)利用待定系数法即可求得函数的解析式;
(2)求得函数与坐标轴的交点,即可求得三角形的面积.
16、(1)(2)7 (3)25分钟
【解析】
试题分析:(1)根据速度=路程÷时间,列式计算即可得解;
(2)根据停车时路程没有变化列式计算即可;
(3)利用待定系数法求一次函数解析式解答即可.
解:(1)平均速度=km/min;
(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.
(3)设函数关系式为S=kt+b,
将(16,12),C(30,40)代入得,
,
解得.
所以,当16≤t≤30时, S与t的函数关系式为S=2t﹣20,
当S=30时,30=2t﹣20,解得t=25,
即该汽车行驶30千米的时间为25分钟.
考点:一次函数的应用.
17、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
∴∠GDB=∠DBC
由折叠的性质可得BC= BC′,∠GBD=∠DBC
∴AD= BC′,∠GBD=∠GDB
∴GD=GB
∴AD-GD= BC′-GB
∴AG=C′G;
(2)解:设GD=GB=x,则AG=AD-GD=8-x
在Rt△ABG中
即
解得:
即
∴S△BDG=
此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
18、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析
【解析】
(1) 取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;
(2) 在AB上截取BN=BE,类比(1)的证明方法即可得出结果;
(3) 在BA延长线上取一点Q,使BQ=BE,连接EQ, 类比(1)的证明方法即可得出结果.
【详解】
(1)余下证明过程为:
∵∠ABE=90°
∴∠BAE+∠AEB=90°
∵∠AEF=90°
∴∠BAE=∠CEF
∴ΔAPE≌ΔECF
∴AE=EF.
(2)成立
证明:在AB上截取BN=BE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴ΔBNE为等腰三角形,AN=EC
∴∠BNE=45°
∴∠ANE=135°
又因为GH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠ANE=∠ECF
由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°
∴∠BAE=∠CEF
∴ΔANE≌ΔECF
∴AE=EF
(3)如图
证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,
在正方形ABCD中,
∵AB=BC,
∴AQ=CE.
∵∠B=90°,
∴∠Q=45°.
∵CH平分∠DCN,∠DCN=∠DCB=90°,
∴∠HCE=∠Q=45°.
∵AD∥BE,
∴∠DAE=∠AEB.
∵∠AEF=∠QAD=90°,
∴∠QAE=∠CEF.
∴△QAE≌△CEF.
∴AE=EF.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
有两函数的交点为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n-m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.
【详解】
解:∵函数y=x﹣1与的图象的交点坐标为(m,n),
∴将x=m,y=n代入反比例解析式得:n= ,即mn=2,
代入一次函数解析式得:n=m﹣1,即n﹣m=﹣1,
∴,
故答案为﹣ .
此题考查反比例函数与一次函数的交点问题,解题关键在于把交点代入解析式
20、
【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.
【详解】
∵直线与直线平行,
∴k=1,
把代入,得
1+b=4,
∴b=1,
∴.
故答案为:.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
21、-1
【解析】
直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
【详解】
解:∵分式的值为零,
∴
解得:.
故答案为:﹣1.
本题考查分式的值为零的条件,正确把握定义是解题的关键.
22、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000021的小数点向右移动1位得到2.1,
所以0.00000021用科学记数法表示为2.1×10-1,
故答案为2.1×10-1.
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
23、
【解析】
连接AC,AF,证明△ACF为直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
如图,连接AC,AF,则AC,AF为两正方形的对角线,
∴∠CAF=∠CAB+∠FAE=45°+45°=90°
∴△ACF为直角三角形,
延长CB交FH于M,
∴CM=4+8=12,FM=8-4=4
在Rt△CMF中,CF=
∵点为中点,
∴AG=CF=
此题主要考查正方形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.
二、解答题(本大题共3个小题,共30分)
24、非负整数解是:0,1、1.
【解析】
分别解出两不等式的解集再求其公共解.
【详解】
解:
解不等式 ①,得x>-1 .
解不等式 ②,得.
∴原不等式组的解集是.
∴原不等式组的非负整数解为0,1,1.
错因分析 较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.
25、(1)BC=5;(2);(3)的长为或3或.
【解析】
(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
【详解】
解:(1)∵梯形中,,,,
∴,
∵是线段的垂直平分线,
∴,
在中,,
又∵,,设,,
,
∴,
∴.
(2)联结,,
∵是线段的垂直平分线,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
当是等腰三角形时
①∵
∴
∵
∴
∴
②
取中点,联结
∵为的中点
∴为梯形中位线
∴
∵
∴为中点,
∴此时与重合
∴
③
联结并延长交延长线于点
此时.
∴,,
∴,
∴在中,,
∵
∴解得,(不合题意含去)
∴综上所述,当是等腰三角形时,的长为或3或
本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
26、(1)(2)
【解析】
(1)按顺序分别进行二次根式的化简,绝对值的化简,然后再进行合并即可;
(2)按顺序进行分母有理化、利用平方差公式计算,然后再按运算顺序进行计算即可.
【详解】
(1) 原式
;
(2)原式
.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
吉林省吉林市吉化第九中学2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份吉林省吉林市吉化第九中学2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安庆市2024年九上数学开学达标检测模拟试题【含答案】: 这是一份安庆市2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】: 这是一份2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。