|试卷下载
终身会员
搜索
    上传资料 赚现金
    吉林省延边2025届九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    吉林省延边2025届九上数学开学达标检测模拟试题【含答案】01
    吉林省延边2025届九上数学开学达标检测模拟试题【含答案】02
    吉林省延边2025届九上数学开学达标检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省延边2025届九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份吉林省延边2025届九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )

    A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
    2、(4分)平行四边形具有的特征是( )
    A.四个角都是直角B.对角线相等
    C.对角线互相平分D.四边相等
    3、(4分)一次函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )
    A.1个B.2个C.3个D.4个
    5、(4分)一次函数的图像不经过第四象限,那么的取值范围是( )
    A.B.C.D.
    6、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)若正比例函数的图象经过点和点,当时,,则的取值范围是( )
    A.B.C.D.
    8、(4分)下列运算结果正确的是( )
    A.=﹣3B.(﹣)2=2C.÷=2D.=±4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:
    ①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)
    10、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)
    11、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
    12、(4分)如图,∠A=90°,∠AOB=30°,AB=2,△可以看作由△AOB绕点O逆时针旋转60°得到的,则点与点B的距离为_______.
    13、(4分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ,众数是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
    (1)求出关于的函数解析式;
    (2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
    15、(8分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点.
    (1)求一次函数解析式.
    (2)求图象和坐标轴围成三角形面积.
    16、(8分)如图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题:
    (1)求汽车在前9分钟内的平均速度.
    (2)汽车在中途停留的时间.
    (3)求该汽车行驶30千米的时间.
    17、(10分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
    (1)求证:AG=C′G;
    (2) 求△BDG的面积.
    18、(10分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
    (1)阅读下面的解答过程。并按此思路完成余下的证明过程
    当点E在线段BC上,且点E为BC中点时,AB=EF
    理由如下:
    取AB中点P,達接PE
    在正方形ABCD中,∠B=∠BCD=90°,AB=BC
    ∴△BPE等腰三角形,AP=BC
    ∴∠BPB=45°
    ∴∠APBE=135°
    又因为CH平分∠DCN
    ∴∠DCF=45°
    ∴∠ECF=135°
    ∴∠APE=∠ECF
    余下正明过程是:
    (2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
    (3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若函数y=x﹣1与的图象的交点坐标为(m,n),则的值为_____.
    20、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
    21、(4分)若分式 的值为零,则 _____.
    22、(4分)用科学记数法表示______.
    23、(4分)如图放置的两个正方形的边长分别为和,点为中点,则的长为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组,并写出它的所有非负整数解.
    25、(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
    (1)如图1,当点与点重合时,求的长;
    (2)设,,求与的函数关系式,并写出定义域;
    (3)如图2,联结,当是等腰三角形时,求的长.

    26、(12分)计算:
    (1);
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
    【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
    ∵AB=30,
    ∴OA2+OB2=182+242=900=302=AB2,
    ∴∠AOB=90°,
    ∵∠AOC=30°,
    ∴∠BOC=∠AOB-∠AOC=60°,
    ∴二号舰航行的方向是南偏东 60°,
    故选C.
    【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
    2、C
    【解析】
    根据平行四边形的性质进行选择.
    【详解】
    平行四边形对角线互相平分,对边平行且相等,对角相等.
    故选C
    本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.
    3、B
    【解析】
    由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
    【详解】
    解:∵,
    ∴函数图象一定经过一、三象限;
    又∵,函数与y轴交于y轴负半轴,
    ∴函数经过一、三、四象限,不经过第二象限
    故选B
    此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
    4、D
    【解析】
    试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (4)S1=,S2=,S1=,∵,∴S1+S2=S1.
    综上,可得:面积关系满足S1+S2=S1图形有4个.
    故选D.
    考点:勾股定理.
    5、A
    【解析】
    根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.
    【详解】
    ∵一次函数的图像不经过第四象限,
    ∴,
    解得,
    故选:A.
    本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.
    6、C
    【解析】
    直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
    【详解】
    解:∵点M(m,n)与点Q(−2,3)关于原点对称,
    ∴m=2,n=−3,
    则点P(m+n,n)为(−1,−3),在第三象限.
    故选:C.
    此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
    7、D
    【解析】
    试题解析:由题目分析可知:在正比例函数y=(1-4m)x中,y随x的增大而减小
    由一次函数性质可知应有:1-4m<0,即-4m<-1,
    解得:m>.
    故选D.
    考点:1.一次函数图象上点的坐标特征;2.正比例函数的定义.
    8、B
    【解析】
    根据平方根和算术平方根的知识点进行解答得到答案.
    【详解】
    A. ,错误;
    B. (﹣)2=2,正确;
    C. ,错误;
    D. ,错误;
    故选B.
    本题主要考查二次根式的性质与化简,仔细检查是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①②③
    【解析】
    ①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;
    ②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;
    ③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;
    ④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.
    【详解】
    解:①∵函数开口向下,∴,
    ∵对称轴,,∴;
    ∵函数与y轴交点在y轴上半轴,∴,
    ∴;所以①正确;
    ②∵函数对称轴为,
    ∴,∴,
    ∵A(3,0)是函数与x轴交点,对称轴为,
    ∴函数与x轴另一交点为(-1,0);
    ∵当时,,
    ∴,②正确;
    ③∵函数对称轴为,
    ∴,
    ∴将带入可化为:,
    ∵,不等式左右两边同除a需要不等号变方向,可得:

    即,此不等式一定成立,所以③正确;
    ④M(-3,)、N(6,)为函数图象上的两点,
    ∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,
    ∴,所以④错误.
    故答案为①②③.
    本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.
    10、>
    【解析】
    根据一次函数的性质即可得答案.
    【详解】
    ∵一次函数y=-3x+1中,-3<0,
    ∴函数图象经过二、四象限,y随x的增大而减小,
    ∵-4<1,
    ∴y1>y2,
    故答案为:>
    本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.
    11、1
    【解析】
    首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
    【详解】
    解:连接AE,交BF于点O.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥BE,
    ∵EF∥AB,
    ∴四边形ABEF是平行四边形,
    ∵AF∥BE,
    ∴∠AFB=∠FBE,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∴∠ABF=∠AFB,
    ∴AB=AF,
    ∴平行四边形ABEF是菱形,连接AE交BF于O,
    ∴AE⊥BF,OB=OF=3,OA=OE,
    在Rt△AOB中,OA==4,
    ∴AE=2OA=8,
    ∴S菱形ABEF=•AE•BF=1.
    故答案为1.
    本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
    12、1
    【解析】
    【分析】根据图形旋转的性质可得出△AOB≌△A′OB′,再由全等三角形的性质可得出∠A′OB′=30°,AB=1,再根据全等三角形的判定定理可得出△AOB≌△A′OB,由全等三角形的性质即可得出结论.
    【详解】连接A′B,
    ∵△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,
    ∴△AOB≌△A′OB′,
    ∴OA=OA′,∠A′OA=60°,
    ∵∠AOB=30°,
    ∴∠A′OB=30°,
    在△AOB与△A′OB中,

    ∴△AOB≌△A′OB,
    ∴A′B=AB=1,
    故答案为:1.
    【点睛】本题考查了旋转的性质,全等三角形的判定与性质,熟练掌握旋转的性质是解题的关键.
    13、7 1
    【解析】
    根据中位数和众数的定义解答.
    【详解】
    解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;
    数据1出现2次,次数最多,所以众数是1.
    故填7;1.
    【点击】
    本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)拉手部分移动的距离为或.
    【解析】
    (1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;
    (2)把代入(1)中所求的函数解析式,求出的值即可.
    【详解】
    解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,
    当拉手由顶端向下运动时即返回时,.
    综上所述:
    (2)由题意可知:当
    ①,
    ②,
    当吸水部分弯曲的角度为时,
    拉手部分移动的距离为或
    本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.
    15、y=2x-1 s=
    解:(1)设一次函数的解析式是y=kx+b.
    根据题意得:
    解得:
    则直线的解析式是:y=2x-1.
    (2)在直线y=2x+1中,令x=0,解得y=1;
    令y=0,解得:x=-
    则求图象和坐标轴围成三角形面积为××1=
    【解析】(1)利用待定系数法即可求得函数的解析式;
    (2)求得函数与坐标轴的交点,即可求得三角形的面积.
    16、(1)(2)7 (3)25分钟
    【解析】
    试题分析:(1)根据速度=路程÷时间,列式计算即可得解;
    (2)根据停车时路程没有变化列式计算即可;
    (3)利用待定系数法求一次函数解析式解答即可.
    解:(1)平均速度=km/min;
    (2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.
    (3)设函数关系式为S=kt+b,
    将(16,12),C(30,40)代入得,

    解得.
    所以,当16≤t≤30时, S与t的函数关系式为S=2t﹣20,
    当S=30时,30=2t﹣20,解得t=25,
    即该汽车行驶30千米的时间为25分钟.
    考点:一次函数的应用.
    17、(1)见解析;(2)
    【解析】
    (1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
    (2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
    【详解】
    (1)证明:∵四边形ABCD为矩形
    ∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
    ∴∠GDB=∠DBC
    由折叠的性质可得BC= BC′,∠GBD=∠DBC
    ∴AD= BC′,∠GBD=∠GDB
    ∴GD=GB
    ∴AD-GD= BC′-GB
    ∴AG=C′G;
    (2)解:设GD=GB=x,则AG=AD-GD=8-x
    在Rt△ABG中

    解得:

    ∴S△BDG=
    此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
    18、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析
    【解析】
    (1) 取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;
    (2) 在AB上截取BN=BE,类比(1)的证明方法即可得出结果;
    (3) 在BA延长线上取一点Q,使BQ=BE,连接EQ, 类比(1)的证明方法即可得出结果.
    【详解】
    (1)余下证明过程为:
    ∵∠ABE=90°
    ∴∠BAE+∠AEB=90°
    ∵∠AEF=90°
    ∴∠BAE=∠CEF
    ∴ΔAPE≌ΔECF
    ∴AE=EF.
    (2)成立
    证明:在AB上截取BN=BE
    在正方形ABCD中,∠B=∠BCD=90°,AB=BC
    ∴ΔBNE为等腰三角形,AN=EC
    ∴∠BNE=45°
    ∴∠ANE=135°
    又因为GH平分∠DCN
    ∴∠DCF=45°
    ∴∠ECF=135°
    ∴∠ANE=∠ECF
    由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°
    ∴∠BAE=∠CEF
    ∴ΔANE≌ΔECF
    ∴AE=EF
    (3)如图
    证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,
    在正方形ABCD中,
    ∵AB=BC,
    ∴AQ=CE.
    ∵∠B=90°,
    ∴∠Q=45°.
    ∵CH平分∠DCN,∠DCN=∠DCB=90°,
    ∴∠HCE=∠Q=45°.
    ∵AD∥BE,
    ∴∠DAE=∠AEB.
    ∵∠AEF=∠QAD=90°,
    ∴∠QAE=∠CEF.
    ∴△QAE≌△CEF.
    ∴AE=EF.
    本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    有两函数的交点为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n-m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.
    【详解】
    解:∵函数y=x﹣1与的图象的交点坐标为(m,n),
    ∴将x=m,y=n代入反比例解析式得:n= ,即mn=2,
    代入一次函数解析式得:n=m﹣1,即n﹣m=﹣1,
    ∴,
    故答案为﹣ .
    此题考查反比例函数与一次函数的交点问题,解题关键在于把交点代入解析式
    20、
    【解析】
    由直线与直线平行,可知k=1,然后把代入中即可求解.
    【详解】
    ∵直线与直线平行,
    ∴k=1,
    把代入,得
    1+b=4,
    ∴b=1,
    ∴.
    故答案为:.
    本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
    21、-1
    【解析】
    直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
    【详解】
    解:∵分式的值为零,

    解得:.
    故答案为:﹣1.
    本题考查分式的值为零的条件,正确把握定义是解题的关键.
    22、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000021的小数点向右移动1位得到2.1,
    所以0.00000021用科学记数法表示为2.1×10-1,
    故答案为2.1×10-1.
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    23、
    【解析】
    连接AC,AF,证明△ACF为直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    如图,连接AC,AF,则AC,AF为两正方形的对角线,
    ∴∠CAF=∠CAB+∠FAE=45°+45°=90°
    ∴△ACF为直角三角形,
    延长CB交FH于M,
    ∴CM=4+8=12,FM=8-4=4
    在Rt△CMF中,CF=
    ∵点为中点,
    ∴AG=CF=
    此题主要考查正方形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.
    二、解答题(本大题共3个小题,共30分)
    24、非负整数解是:0,1、1.
    【解析】
    分别解出两不等式的解集再求其公共解.
    【详解】
    解:
    解不等式 ①,得x>-1 .
    解不等式 ②,得.
    ∴原不等式组的解集是.
    ∴原不等式组的非负整数解为0,1,1.
    错因分析 较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.
    25、(1)BC=5;(2);(3)的长为或3或.
    【解析】
    (1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
    (2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
    (3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
    【详解】
    解:(1)∵梯形中,,,,
    ∴,
    ∵是线段的垂直平分线,
    ∴,
    在中,,
    又∵,,设,,

    ∴,
    ∴.
    (2)联结,,
    ∵是线段的垂直平分线,

    ∵,,

    在中,
    在中,


    (3)在中,,,
    ∴,
    当是等腰三角形时
    ①∵





    取中点,联结
    ∵为的中点
    ∴为梯形中位线


    ∴为中点,
    ∴此时与重合


    联结并延长交延长线于点
    此时.
    ∴,,
    ∴,
    ∴在中,,

    ∴解得,(不合题意含去)
    ∴综上所述,当是等腰三角形时,的长为或3或
    本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
    26、(1)(2)
    【解析】
    (1)按顺序分别进行二次根式的化简,绝对值的化简,然后再进行合并即可;
    (2)按顺序进行分母有理化、利用平方差公式计算,然后再按运算顺序进行计算即可.
    【详解】
    (1) 原式

    (2)原式
    .
    本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
    题号





    总分
    得分
    相关试卷

    吉林省吉林市吉化第九中学2024-2025学年数学九上开学达标检测模拟试题【含答案】: 这是一份吉林省吉林市吉化第九中学2024-2025学年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安庆市2024年九上数学开学达标检测模拟试题【含答案】: 这是一份安庆市2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】: 这是一份2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map