年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】

    江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第1页
    江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第2页
    江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】

    展开

    这是一份江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列四个多项式中,不能因式分解的是( )
    A.a2+aB.C.D.
    2、(4分)已知二次根式的值为3,那么的值是( )
    A.3B.9C.-3D.3或-3
    3、(4分)在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是( )
    A.2:7:2:7B.2:2:7:7C.2:7:7:2D.2:3:4:5
    4、(4分)如图,正方形中,,连接交对角线于点,那么( )
    A.B.C.D.
    5、(4分)在直角坐标系中,线段是由线段平移得到的,已知则的坐标为( )
    A.B.C.D.
    6、(4分)下列由左到右的变形中,属于因式分解的是( )
    A.B.
    C.D.
    7、(4分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为
    A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
    8、(4分)下列二次根式中,属于最简二次根式的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.
    10、(4分)在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.
    11、(4分)计算:=__.
    12、(4分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,则乙施工队单独完成此项工程需_____天.
    13、(4分)如图,函数和的图象相交于点A(,3),则不等式的解集为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.
    (1)求日销售y(件)与销售价x(元/件)之间的函数关系式;
    (2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?
    15、(8分)解下列方程:
    (1)
    (2)
    16、(8分)如图,直线与直线 ,两直线与轴的交点分别为、.
    (1)求两直线交点的坐标;
    (2)求的面积.
    17、(10分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.
    18、(10分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.
    (1)求证:四边形ABCE是菱形;
    (2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.
    ①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;
    ②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.
    20、(4分)直角三角形的三边长分别为、、,若,,则__________.
    21、(4分)如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.
    22、(4分)计算:.
    23、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,平面直角坐标系中,点在轴上,点在轴上.
    (1)求直线的解析式;
    (2)若轴上有一点使得时,求的面积.
    25、(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
    (1)求证:CE=CF;
    (2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
    26、(12分)解不等式组
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    逐项分解判断,即可得到答案.
    【详解】
    解:A选项a2+a=a(a+1);
    B选项=(m+n)(m-n);
    C选项. 不能因式分解;
    D选项. =(a+3)2.
    故选C
    本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
    2、D
    【解析】
    试题分析:∵,∴.故选D.
    考点:二次根式的性质.
    3、A
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠B=∠D,
    ∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.
    故选:A.
    此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.
    4、D
    【解析】
    根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,
    ∴,
    ∵DC=3DF,∴DF:AB=1:3
    ∴S△DEF:S△AEB=1:9.
    故选:D.
    本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.
    5、B
    【解析】
    根据点A和点A′的坐标判断出平移方式,根据平移方式可得点的坐标.
    【详解】
    解:∵点A的坐标为(−2,3),A′的坐标为(3,4),
    ∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,
    ∵点B的坐标为(−3,1),
    ∴点B′的坐标为(2,2),
    故选:B.
    此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    6、D
    【解析】
    根据因式分解的定义,逐个判断即可.
    【详解】
    解:A、不属于因式分解,故本选项不符合题意;
    B、ax2+axy+ax=ax(x+y+1),因式分解错误,故本选项不符合题意;
    C、m2-2mn+n2=(m-n)2,因式分解错误,故本选项不符合题意;
    D、属于因式分解,故本选项符合题意;
    故选:D.
    本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
    7、C
    【解析】
    试题分析:∵A点坐标为:(2,4),A1(﹣2,1),
    ∴平移和变化规律是:横坐标减4,纵坐标减1.
    ∴点P(2.4,2)平移后的对应点P1为:(-1.6,-1).
    ∵点P1绕点O逆时针旋转180°,得到对应点P2,
    ∴点P1和点P2关于坐标原点对称.
    ∴根据关于原点对称的点的坐标是横、纵坐标都互为相反数的性质,得P2点的坐标为:(1.6,1).
    故选C.
    8、C
    【解析】
    根据最简二次根式的定义对各选项分析判断利用排除法求解.
    【详解】
    解:A、不是最简二次根式,错误;
    B、不是最简二次根式,错误;
    C、是最简二次根式,正确;
    D、不是最简二次根式,错误;
    故选:C.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBD=∠CBD,
    ∴∠FBD=∠FDB,
    ∴FB=FD=11cm,
    ∵AF=5cm,
    ∴AD=16cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=8cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    分两种情况:①当点Q在EC上时,根据PF=EQ可得: 5-t=8-2t,
    解得:t=3;
    ②当Q在BE上时,根据PF=QE可得:5-t=2t-8,
    解得:t=.
    所以,t的值为:t=3或t=.
    故答案为:3或.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    10、
    【解析】
    根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.
    【详解】
    ∵A1C1∥AC,A1D1∥BC,
    ∴四边形A1C1CD1为平行四边形,
    ∴A1D1=C1C=a=,
    同理,四边形A2C2C1D2为平行四边形,
    ∴A2D2=C1C2=a=,
    ……
    ∴线段AnDn=,
    故答案为:.
    本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.
    11、2
    【解析】
    解:.故答案为.
    12、2.
    【解析】
    求的是工效,工作时间,一定是根据工作总量来列等量关系.等量关系为:甲20天的工作总量+乙22天的工作总量=2.
    【详解】
    解:设甲施工队单独完成此项工程需x天,
    则乙施工队单独完成此项工程需x天.
    根据题意得:.
    解这个方程得:x=3.
    经检验:x=3是所列方程的解.
    ∴当x=3时,x=2.
    故答案为2
    应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    13、x≥1.5
    【解析】
    试题分析:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.
    解:∵函数y=2x过点A(m,3),
    ∴2m=3,
    解得:m=,
    ∴A(,3),
    ∴不等式2x>ax+4的解集为x>.
    故答案为x>.
    考点:一次函数与一元一次不等式.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)55元
    【解析】
    (1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.
    【详解】
    解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),
    将(40,60),(58,24)代入y=kx+b,得:
    ,解得:,
    ∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;
    当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.
    综上所述:y与x之间的函数关系式为.
    (2)设当天的销售价为x元时,可出现收支平衡.
    当40≤x≤58时,依题意,得:
    (x﹣40)(﹣2x+140)=100×3+150,
    解得:x1=x2=55;
    当57<x≤71时,依题意,得:
    (x﹣40)(﹣x+1)=100×3+150,
    此方程无解.
    答:当天的销售价为55元时,可出现收支平衡.
    本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.
    15、 (1) ;(2)无解
    【解析】
    (1) 移项,再因式分解求解即可.
    (2) 方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)


    (2)

    经检验,是原方程的增根,
    ∴原方程无解
    本题主要考查了解方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    16、(1)A(1,0),B(3,0);(2)1
    【解析】
    分析:(1)通过解方程组组可得到C点坐标;
    (2)先确定A点和B点坐标,然后根据三角形面积公式求解.
    详解:(1)由得
    ∴.
    (2)在中,当时,

    在中,当时,


    ∴ .
    点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
    17、证明见解析.
    【解析】
    连接BD交AC于O,根据平行四边形性质得出,,根据平行线性质得出,根据AAS证≌,推出,根据平行四边形的判定推出即可.
    【详解】
    连接BD交AC于O,
    四边形ABCD是平行四边形,
    ,,


    在和中,

    ≌,


    四边形BFDE是平行四边形.
    本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    18、(1)见解析;(2)①24,②;
    【解析】
    (1)利用平移的性质以及菱形的判定得出即可;
    (2)①首先过E作EF⊥BD交BD于F,则∠EFB=90°,证出△QOE≌△POB,利用QE=BP,得出四边形PQED的面积为定值;
    ②当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3,过O作OG⊥BC交BC于G,得出△OGC∽△BOC,利用相似三角形的性质得出CG的长,进而得出BP的长.
    【详解】
    (1)证明:∵△ABC沿BC方向平移得到△ECD,
    ∴EC=AB,AE=BC,
    ∵AB=BC,
    ∴EC=AB=BC=AE,
    ∴四边形ABCE是菱形;
    (2)①四边形PQED的面积是定值,理由如下:
    过E作EF⊥BD交BD于F,则∠EFB=90°,
    ∵四边形ABCE是菱形,
    ∴AE∥BC,OB=OE,OA=OC,OC⊥OB,
    ∵AC=6,
    ∴OC=3,
    ∵BC=5,
    ∴OB=4,sin∠OBC= ,
    ∴BE=8,
    ∴EF=BE⋅sin∠OBC=8×,
    ∵AE∥BC,
    ∴∠AEO=∠CBO,四边形PQED是梯形,
    在△QOE和△POB中

    ∴△QOE≌△POB,
    ∴QE=BP,
    ∴S = (QE+PD)×EF= (BP+DP)×EF=×BD×EF=×2BC×EF=BC×EF=5× =24;
    ②△PQR与△CBO可能相似,
    ∵∠PRQ=∠COB=90°,∠QPR>∠CBO,
    ∴当∠QPR=∠BCO时,△PQR∽△CBO,此时有OP=OC=3.
    过O作OG⊥BC交BC于G.
    ∵∠OCB=∠OCB,∠OGC=∠BOC,
    ∴△OGC∽△BOC,
    ∴CG:CO=CO:BC,
    即CG:3=3:5,
    ∴CG= ,
    ∴BP=BC−PC=BC−2CG=5−2×= .
    此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、15
    【解析】
    l1∥l2∥l3,
    ,
    所以,所以AC=15.
    20、或5
    【解析】
    根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.
    【详解】
    解:①若b是斜边长
    根据勾股定理可得:
    ②若c是斜边长
    根据勾股定理可得:
    综上所述:或5
    故答案为:或5
    此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    21、
    【解析】
    作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.
    【详解】
    作HE⊥BD交BD于点E,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°, ∠ADB=45°,
    ∴△DEH是等腰直角三角形,
    ∴HE=DE,
    ∵HE2+DE2=DH2,
    ∴HE=,
    ∵∠ABH=∠DBH,∠BAD=90°, ∠BEH=90°,
    ∴HE=AH=,
    ∴.AD=.
    故答案为.
    本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.
    22、
    【解析】
    23、平行四边形
    【解析】
    试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
    考点:平行四边形的判定
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)的面积为或
    【解析】
    (1)根据点A,B的坐标,利用待定系数法可求出直线AB的解析式;
    (2)设点P的坐标为(t,0),分点P在原点左侧及点P在原点右侧两种情况考虑:①若点P在x轴上原点左侧,当PB=AP时,∠APO=2∠ABO,在Rt△APO中,利用勾股定理可求出t的值,进而可得出BP的长,再利用三角形的面积公式可求出△ABP的面积;②若点P在x轴上原点右侧,由对称性,可得出点P′的坐标,进而可得出BP′的长,再利用三角形的面积公式可求出△ABP′的面积.综上,此题得解
    【详解】
    解:(1)设直线的解析式为,则:
    解得:
    ∴所求直线的解析式为:
    (2)设点为
    ①若点在轴上原点左侧,当时,
    在中,,,

    解得:


    ②若点在轴上原点右侧,由对称性,得点为,此时,

    综合上述,的面积为或.
    本题考查了待定系数法求一次函数解析式、勾股定理以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB的解析式;(2)分点P在原点左侧及点P在原点右侧两种情况,求出△ABP的面积.
    25、(1)见解析(2)成立
    【解析】
    试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
    (2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
    得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
    试题解析:(1)在正方形ABCD中,
    ∴△CBE≌△CDF(SAS).
    ∴CE=CF.
    (2)GE=BE+GD成立.
    理由是:∵由(1)得:△CBE≌△CDF,
    ∴∠BCE=∠DCF,
    ∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
    ∵∠GCE=∠GCF, GC=GC
    ∴△ECG≌△FCG(SAS).
    ∴GE=GF.
    ∴GE=DF+GD=BE+GD.
    考点:1.正方形的性质;2.全等三角形的判定与性质.
    26、﹣1≤x<2
    【解析】
    首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.
    【详解】
    解不等式①,得:x<2,
    解不等式②,得:x≥﹣1,
    所以不等式组的解集为﹣1≤x<2,
    将不等式组的解集表示在数轴上如下:
    此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    题号





    总分
    得分

    相关试卷

    2024年江苏省常州市正衡中学九年级数学新课结束模拟预测题(无答案):

    这是一份2024年江苏省常州市正衡中学九年级数学新课结束模拟预测题(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省常州市正衡中学2024年九年级数学新课结束模拟练习:

    这是一份江苏省常州市正衡中学2024年九年级数学新课结束模拟练习,共7页。

    2023-2024学年江苏省常州市天宁区正衡中学九上数学期末检测试题含答案:

    这是一份2023-2024学年江苏省常州市天宁区正衡中学九上数学期末检测试题含答案,共9页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map